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UNF-ST&DARDS has been used to determine
criticality safety margin of 163 already loaded
BWR canisters

 ABWR burnup credit approach has been developed to
support as-loaded criticality analysis of already loaded
canisters

— As-loaded criticality analysis is performed to determine inherent safety
margin of the already loaded canisters

— Inherent safety margin can be used to offset systems (e.g., canister,
fuel assembly) integrity related uncertainties after extended storage
and or during disposal time period

« The BWR burnup credit methodology consists of

— Justification for BWR assembly modeling

— Justification for using a uniform void profile

— Justification for burnup profile selection
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Overview

« Used Nuclear Fuel — Storage Transportation and Disposal
Resource and Data System (UNF-ST&DARDS) Overview

* Differences between PWR and BWR Canister licensing
 Evolution of BWR fuel

* Fuel Depletion parameters for BWR Fuel

 Selection of BWR Axial Burnup Profiles

» As-loaded criticality calculations

* Results and Conclusions to date
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UNF-ST&DARDS provides a means to
integrate data and analysis tools to estimate
safety margins

A Unified tool that contains modeling
information in a database integrated
with analysis codes

« Database contains GC-859 collected
fuel, irradiation information, and cask
loading maps

* The tool also contains

— templates for a number of canisters and fuel
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PWR and BWR licensing and information
differences drive different burnup credit
approaches

- Many PWR canisters in use today use burnup credit for
transportation

 Soluble boron is typically credited for PWR canister loading
(Storage)

- BWRs load under mostly the same conditions that are
required for transport

* Disposal still a potential concern due to lack of credit for
neutron absorber

* Potential for new licensing issues for transportation for
extended storage timelines

* New higher capacity casks are being produced and licensed

* Limited previous application of BWR burnup credit % OAK RIDGE
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Evolution of BWR fuel informs depletion

parameter selection
« Assemblies are classified into three categories mainly based on axial fuel

features for applicability of burnup profiles

* The three categories are:

— Single Lattice Unblanketed (SLU) — Beginning —Late 1970s
Mostly Early BWR-1 fuel, 7x7 fuel, and early 8x8
— Single Lattice Blanketed (SLB) — Late 1970s until 1990s — Natural Blankets

Majority of the 8x8 fuel and Areva 9x9
— Multi-Lattice (ML) — Late 1990s through today — Multiple lattices also Natural Blankets

Introduction of vanished lattice
All currently produced fuel GE 9x9, and 10x10 variants, Areva 10x10 and 11x11, SVEA series

« Distribution of fuel types as of mid 2013
- Discharged Dry Storage Analyzed

mSLU
uSLB
ML

= SLU
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ML

E National Laboratory



BWR depletion parameters selected based on

recent research
* Depletion parameters selection for PWRs and its impact are
well understood

 Depletion conditions substantially different for BWR fuel than
PWR fuel
— Highly voided moderator
— Extensive use of control blades during operation

— More substantial variation in fuel design — multiple lattices axially and
radial variations

« Research into BWR fuel depletion parameters investigated
iIn NUREG-7224 for extended burnup credit

— Single cycle of modern BWR operation using a variety of fuel designs

* Most important depletion parameters to discharge reactivity
are void fraction, control blade insertion, and axial burnup
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Void fraction and control blade insertion
depletion parameter selected for simplicity
and conservatism

« UNF-ST&DARDS uses point depletion ORIGEN libraries generated
using TRITON to perform rapid depletion and decay for criticality,
shielding, and thermal calculations

* Must select a set of depletion conditions that will be conservative but not
overly penalizing if possible

— Selection of conservative depletion parameters makes UNF-ST&DARDS as-loaded
canister-specific analysis conservative

0.3 g/cm3 uniform moderator density and full length control blade
insertion used for BWR depletion analysis
— 0.3 g/cm? represents average of representative axial void profile

— Multiple voids fractions would increase the number of ORIGEN libraries — considered for future
version of UNF-ST&DARDS

* In this work we investigated the effects of these depletion parameters
compared to limiting values found in NUREG-7224
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Void Fraction and Control Blade Insertion
(cont’d)

 NUREG identified a limiting void profile

— Lowest exit moderator density ~0.12 g/cm? from NUREG vs ~0.22
g/cm3 from commercial reactor critical state points (CRC)

Water rod Fuel pin

» Result of limiting control blade insertion resulted in
an increase of 0.012 Ak_z compared to unrodded
depletion identified in NUREG

* Investigated the effect of rodded depletion by g/cm?3
running calculations TRITION > ORIGAMI > KENO
calculations

— UNF-ST&DARDS case — 0.3 g/cm?3 with CB insertion
— Limiting Moderator Distribution from NUREG with no CB insertion

+ Used MPC-68 Model single basket cell model with Neutron absorber
radially reflected boundaries

— Used limiting profile from 10-18 GWd/MTU to give high weight to
void.
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Depletion Parameter Study Results

» Control blade insertion cases are more

re a Ct i Ve - ‘ ——Void —a— Control Blade
o 2 W/O 0174 \
- 0.01545 Ak more reactive @ 30 GWd/MTU B
0.01938 Ak, more reactive @ 50 GWd/MTU o e o
0.68 \\

— 4 w/o e
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* Higher enrichment results show that the
blades would not cover both the limiting

~—e—\loid —a— Control Blade

void profile and maximum observed =N
control blade insertion LN
— Combination of limiting void profile and control o \\
blade insertion into the upper portion of the o —
assembly unlikely " =
— Work by Ade et al. Shows that there is .
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significant relaxation in the axial burnup profile
with control rod insertion

Burnup (GWd/MTU)

« At least correlated if not caused
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Axial burnup profiles selected from CRC data

using recent research

« NUREG-7224 shows that sum of burnup in top 3 nodes or top 6 nodes
out of 25 was most highly correlated with discharge reactivity for 30-50

GWd/MTU

« 2,312 profiles from 15 cycles of operation from 3 US BWRs — All SLB fuel
— YMP grouped profile data from into bins of every 4 GWd/MTU up to 46 GWd/MTU

— Took minimum burnup from top 3 and top 6 (same except for 4 instances) from YMP
document and mapped to UNF-ST&DARDS burnup profile bins - 0-6, 6—10, 10-18,

18-34, and greater than 34 GWd/MTU

— Ran ORIGAMI > KENO calculations for upper end of each bin to pick limiting profile —

no blanket modeling
— Uniform profile considered
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Applicability of Axial Burnup Profiles
« All profiles from SLB fuel — look at applicability to SLU and ML fuel

« SLB fuel has natural uranium blankets in at least upper 6 inches

— Profiles should be more burned in the upper portion of fuel which contributes to end
effect — observed with PWR blanketed and unblanketed fuel

« ML fuel less immediately clear due to change in lattice in upper portion of
fuel

UNF-ST&DARDS profiles grouped into <25, 25-40, and >40 GWd/MTU corresponding
to NUREG-7224 bins

Plotted along with NUREG limiting profiles — where bins intersect UNF-ST&DARDS
profiles go in both.

SLB profiles substantially under burned in top portion of the compared to all profiles

— Likely due to dryer upper lattice and many 12” blankets in CRC data

Normalized Burnup
Normalized Burnup
_ Norm-illiwd lermlp
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Criticality Analysis

Model Individual assemblies with nominal assembly enrichments,
burnups and cooling times for desired analysis date from GC-859

— Transportation: In-service date to 2100 W B

— Disposal: In-service date to year 10,000

Analysis performed for 163 BWR canisters at
8 sites

— 3 canisters — one each for two legacy sites, 1
MPC-68 for operating sites

| Develop cask model consistent with

Perform eriticality calculation using

g&m assembly from
* Transportation
— Calculation of k4 values for each date Pttty clodion Congte o 1 o Ul
. . . . . usinghe ) model used o the cask model utl ueand kny
— Calculation of margin to the licensing basis miniel e b8
 Disposal

- Uncredted Crticalty safety margin = Ky~

— Degraded Neutron Absorber
* Neutron absorber was not credited in the analysis
« Assumed survival of basket structure for SS components but failure of CS components

« Subcritical limit of 0.98 assumed
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Transportation Results - k
- Sites A and B legacy sites

— Substantial fraction of location occupied by damaged fuel
— Damaged fuel model as fresh fuel of nominal enrichment with optimum pitch permitted by storage
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Transportation Results — Margin to Basis

- Site A and B canisters have k. ; = 0.83 in addition to damaged fuel

- MPC-68 k. = 0.92
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Disposal Results

* Only canisters to exceed limit are the Site A canisters with Damaged fuel
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Conclusions

* Used recently published research to establish burnup credit
approach for as-loaded BWR casks

— Bounding control rod insertion with assembly average moderator
density

— Selected axial burnup profiles from available CRC data

* Approach is overall very conservative owing to using
blanketed profiles on unblanketed models

— Still seems to be sufficient especially with more realistic damaged fuel
treatment

» We are collecting more fuel, operational, and cask data for
refining and expanding the approach
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