The Thermal Neutron Scattering Law for Hydrogen Bound in Plutonium Dihydride and Predicted Critical Mass for Several Configurations

> Michael L. Zerkle and Jesse C. Holmes Naval Nuclear Laboratory

2017 Nuclear Criticality Safety Division Topical Meeting September 10-15, 201 Carlsbad, NM

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Bechtel Marine Propulsion Corporation, a wholly owned subsidiary of Bechtel National, Inc.

Outline

- Background
 - Phase Diagram
 - Crystal Structure
- DFT/LD Calculations
- TSL Evaluation
- Calculated Critical Mass
 - Bare Sphere
 - Water-reflected Sphere
- Conclusions

Plutonium-Hydrogen Phase Diagram

- H₂ (gas) reacts with Pu (metal) to form plutonium hydrides (PuH_x)
- Three PuH_x phases present
 - PuH_2 (FCC) for H/Pu ≤ 2.0
 - Two phase solid solution of Pu (metal) + PuH₂ (FCC)
 - PuH_{2+x} (FCC) for 2.0 < H/Pu < 3
 - Single phase solid solution for 2.0 < H/Pu < 2.75
 - Two phase solid solution, $\text{PuH}_{2\text{+}x}$ (FCC) + PuH_3 (Hex) for 2.75 < H/Pu < 3- ϵ
 - PuH_3 (Hex) for 2.75 < H/Pu ≤ 3.0
 - Single phase solid solution for $3-\epsilon < H/Pu < 3.0$
- This work concentrates on PuH₂
 - PuH_{2+x} and PuH_3 to be evaluated later

HYDROGEN / PLUTONIUM ATOMIC RATIO

Phase diagram for the plutonium-hydrogen system. From R. N. R. Mulford and G. E. Sturdy, *J. Am. Chem. Soc.*, **78**, 3899 (1956).

PuH₂ Structure

- PuH₂ has a CaF₂ type FCC structure
 - 12 atoms per unit cell
 - 4 Pu atoms (blue) at vertices and faces of unit cell
 - 8 H atoms (grey) in tetrahedral holes between Pu atoms
 - Mass density of 10.40 g/cm³
- Measured lattice parameter (X-ray diffraction)
 - *a* = 5.359 ± 0.002 Å, Mulford and Sturdy (1955)
 - *a* = 5.359 ± 0.001 Å, Coffinberry and Ellinger (1956)
 - a = 5.359 ± 0.002 Å, Muromura et al. (1972)
 - *a* = 5.3593 Å, Willis et al. (1985)
- H-PuH₂ TSL developed using first-principles approach
 - Density Functional Theory (DFT) to calculate interatomic Hellman-Feynman forces for crystal structure
 - Lattice Dynamics (LD) to determine dispersion relations and phonon density of states (DOS)
 - H-PuH₂ TSL evaluated in incoherent approximation using NJOY/LEAPR

PuH₂ Unit Cell

TSL Evaluation Process using First-principles DFT/LD Calculations

PuH₂ Structure Optimization

- DFT structure optimization using VASP (Vienna Ab-Initio Simulation Package)
 - GGA exchange and correlation functional
 - Hubbard U parameter correction applied to Pu 5f electrons
 - Account for effect of strong correlation of 5f electrons on chemical binding of U and Pu molecules
 - Spin-polarized magnetism
 - 500 eV planewave cutoff
 - *k*-point spacing of 0.2 Å⁻¹ (11×11×11 k-mesh)
 - 10⁻⁶ eV total electronic energy threshold
- Hubbard U = 0.6 eV reproduces the measured lattice parameter of a = 5.349 Å

VASP structure optimization of PuH₂ using GGA+U.

PuH₂ Lattice Dynamics

LD calculations performed using PHONON

- Interatomic forces calculated by VASP
- 2×2×2 supercell (96 atoms)
- ±0.02 Å atom displacements
- 0.02 Å⁻¹ k-point spacing (3×3×3 k-point mesh)
- Dispersion relations (at right)
 - Well separated acoustic and optical modes
 - Lower branches are acoustic modes mainly due to heavy Pu atom vibrations
 - Higher branches are optical modes mainly due to light H atom vibrations
- Phonon DOS (next slide)
- No published INS measurements are available to verify calculated dispersion relations & phonon DOS

Calculated dispersion relation for PuH₂ along the highest-symmetry points of the Brillouin zone.

Calculated Phonon DOS for PuH₂

Comparision of H Phonon DOS for Several Metal Hydrides

H-PuH₂ TSL Evaluation

- H-PuH₂ TSL generated using NJOY/LEAPR
 - H-PuH₂ phonon DOS from PHONON calculation
 - Incoherent approximation
 - Atomic mass ratio and free atom scattering cross section for ¹H from ENDF/B-VII.1
 - α and β grids optimized to treat scattering up to 5 eV without SCT approximation
 - Temperature evaluated at 293.6 K (room temp.)
- Pu-PuH₂ TSL not evaluated at this time
 - LEAPR can't properly treat Pu coherent elastic scattering in PuH₂ without extensive modifications
 - Deferring evaluation of Pu-PuH₂ until beta2 version of FLASSH code is available (expected Fall 2017)
 - Proper treatment of coherent elastic scattering and relax incoherent approximation
- Use free gas approximation for Pu
 - Small approximation for PuH₂ since H scattering dominates

Total, elastic, and inelastic scattering cross section for $H-PuH_2$ at 293.6 K generated by NDEX

Comparision of Total Scattering Cross Sections for H-PuH₂, H-YH₂, and H-ZrH₂

Comparision of Total Scattering Cross Sections for H-PuH₂, H-YH₂, and H-ZrH₂

Calculated Critical Mass

Calculated critical mass

- Bare sphere
- Water-reflected (20 cm thick) sphere
- Solid 239PuH₂ core
- Moderated ²³⁹PuH₂ + H₂O slurry core
 - 0.0-0.95 H₂O volume fraction
 - 2 51 H/²³⁹Pu ratio
- Codes and cross sections
 - MC21 v8.0.0 Monte Carlo
 - NDEX v8.0.0 ND processing
 - ENDF/B-VII.1 cross sections @ 293.6 K
- $^{239}PuH_2 + H_2O$ core modeling details
 - Homogenized slurry
 - H-PuH₂ TSL
 - H-H₂O TSL
 - ²³⁹Pu free gas

Bare Sphere

Water-reflected Sphere

Calculated Critical Mass

Calculated Critical Radius

Fission Fractions for Bare and Water-Reflected Cases

Difference in k_{eff} between ¹H free-gas and H-PuH₂ TSL Treatments

Error bars provide 95% CI on Δk

Conclusions

- TSL for H-PuH₂ developed from first-principles DFT/LD calculations
- Suitable for analysis of bulk PuH_x composition with 0.0 < x < 2.0
- Predicted critical mass and radius provided for
 - Bare and water-reflected ²³⁹PuH₂ sphere
 - Bare and water-reflected homogenized ²³⁹PuH₂ + H₂O slurry
- H-PuH₂ TSL yields small reduction of k_{eff} for moderated configurations
- Lack of published inelastic neutron scattering data for $\text{PuH}_{\rm x}$ impedes validation of TSL

Backup Slides

PuH₂ Lattice Dynamics

Calculated dispersion relation for PuH₂ along the highest-symmetry points of the Brillouin zone.

W