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I. Introduction
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1.1 Background

□ Storage status in Korea

[1] KHNP, 2017   [2] NARS Report No. 307, 2017
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1.1 Background
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• The shortage of spent nuclear fuel (SNF) storage in SNF pool has been 
issued.

• Some alternatives are suggested such as:

• High density SNF pool

• SNF storage and transportation cask

• It is essential to develop advanced neutron absorber for effective 
storage of SNF.

• Also, there’s no commercial domestic neutron absorber in Korea.

□ Background
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1.2 Neutron absorber material
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□ Common material

• BORAL

• METAMIC

• Borated Stainless Steel

Boron compound

However, boron compound generates helium bubble when boron reacts with

neutron. These helium bubbles enhance defect production and lead to further

degradation. Also, blistering from BORAL neutron absorber has been noticed. This

could reduce free clearance.

Not good for long-term storage
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1.2 Neutron absorber material

□ New material: Gadolinium

• Very high absorption cross section in thermal region

• Relative abundance of Gd-155, 157 (30.45 a/o) is 1.5 times 

higher than B-10 (19.9 a/o)

Element Abundance (a/o) 𝝈𝝈𝒂𝒂 (barns)
B-10 19.9 3,840
B-11 80.1 0.005

Gd-152 0.20 1,400
Gd-154 2.18 290
Gd-155 14.80 62,540
Gd-156 20.47 12
Gd-157 15.65 255,000
Gd-158 24.84 7
Gd-160 21.86 1.8
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1.3 Regulation for criticality analysis
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• The criticality safety should be ensured to be used as neutron 
absorber in the spent nuclear fuel storage system.

• The regulation and standards for spent fuel dry storage and 
transportation system is 10CFR71.55, NUREG-1536 and 
NUREG-1617.

□ Regulation of criticality analysis for SNF storage and 
transportation cask system

“The effective neutron multiplication factor, keff, including all 
biases and uncertainties at a 95-percent confidence level, should not 
exceed 0.95 under all credible normal, off-normal, and accident-
level conditions.”

[3] 10 CFR Part 71, U.S. NRC
[4] NUREG-1536, U.S. NRC
[5] NUREG-1617, U.S. NRC
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II. Analysis methodology
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2.1 Analysis method

□ Computer program

• Program : KENO-Va in SCALE 6.2 code system
– Monte Carlo criticality computer code for criticality 

safety analysis tools

• Cross-section library : ENDF/B-VII.0 (238 group)

• Number of cycle : 2000

• Number of neutron generation per cycle : 8000

• Average standard deviation : 0.00007-0.00024
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2.2 Analysis model
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□ Fuel assembly model

• 17X17 array WH OFA type 
fuel

• Fresh fuel (enrichment and 
composition)

• U-235 enrichment : 4.5 w/o

• Fuel rod UO2 density : 95.25% 
of theoretical density
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2.2 Analysis model
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□ Cask model (KORAD-21)

[5] 14220-P1-N-TR-006, KORAD (2012)
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2.2 Analysis model
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[5] 14220-P1-N-TR-006, KORAD (2012)

Component Material
Canister Stainless steel

Cask body Carbon steel
Support disk Stainless steel

Neutron shield Resin
Lid Stainless steel

• Dual purpose: Storage 
and transportation

• Capacity: 21 FAs

• 22 support disks in 
axial direction

□ Cask model (KORAD-21)



2017 Nuclear Criticality Safety Division13th. September. 2017 13

2.2 Analysis model

□ Basket model

• No separate neutron absorber or sheathing

• Neutron absorbing materials are melt in stainless steel
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absorber

(Metamic)

Cell wall

Sheathing

Fuel
Region

Cell wall
+ Neutron absorber
(SS + neutron absorber)

Conventional Integral
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2.2 Analysis model

□ Optimizing neutron absorber contents
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III. Results and discussion
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3.1 Normal condition

□ Dry condition

Coolant 
condition keff SD*

Dry condition
(Dry air) 0.38234 0.00008

• The normal condition is calculated in dry condition.

• The coolant in dry condition is dry air (0.001293 𝑔𝑔/𝑐𝑐𝑚𝑚3)

* Standard deviation
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3.2 Off-normal condition

□ Off-normal condition
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• The water condition 
could change according 
to outer environment 
state.

• The humidity inside the 
cask system and water 
smeared into the fuel rods 
should be considered.
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3.3 Accident conditions

□ Water height
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3.3 Accident conditions

□ Water height

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k ef
f

Water height (%)

• Water filled with overall 

cask has the highest 

reactivity among partial 

and fully flooded 

conditions.
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3.3 Accident conditions

□ FA arrangement

FA position keff SD

Center 0.91433 0.00020

Eccentric 0.91556 0.00021

• The FAs are leaned towards 

the center of the cask.

• The FAs are totally attached 

to the edge of the baskets.

• Calculations are performed 

under wet condition.
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3.3 Accident conditions

□ Flux trap reduction

Condition keff SD

Wet 0.91433 0.00020

Reduced flux trap 0.92297 0.00023

• The flux trap could be 

diminished due to the 

accidents such as tip-over 

or drop.
Flux trap
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IV. Conclusions
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4. Conclusions
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• The optimum neutron absorber content for this study is 
selected as Gd 1 wt% and B 0.4 wt%.

• In the dry condition, the keff is lower than 0.4. However, 
the reactivity dramatically increases when the cask is 
flooded with water.

• The reactivity is the highest for the fully flooded 
condition.

• The effective multiplication factor shows the highest 
when the water density is 1 𝑔𝑔/𝑐𝑐𝑚𝑚3.
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4. Conclusions
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• In eccentric position of fuel assemblies, the keff
increases about 0.01.

• When the cask tip-over, the flux trap could be decreased. 
If the flux trap reduced in maximum value, the reactivity 
increases about 864 pcm.

• From the calculations of normal, off-normal, and 
accident conditions, all the results satisfy the regulatory 
limit.
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Thank you for your kind attention!
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