Developing a Streamlined Approach to Criticality Safety Analyst Training and Qualification

2017 Nuclear Criticality Safety Division Topical Carlsbad, NM

Alicia Salazar-Crockett, Mary Beth Lujan, Andrew Wysong

September 13, 2017

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNS

LA-UR-17-28021

Nuclear Criticality Safety Division

Background

• Description of the Program

- Development
- Priorities & Resources
- Results
- Conclusion

Background

Background

• Autumn 2012:

- Levarage decades of innovative and expert-based knowledge and practices
- Developing and standardizing new approaches that aligned with professional standards
 - Consider
 - Instructional Design
 - Human Resources
 - Nuclear Industry
- -The program also had to:
 - Attract
 - Promote
 - Retain

talent in a competitive field.

...all of this and a delivery date of 4 weeks!

• LANL's accelerated development of a CSA training and qualification program

The Program

Description of Program Development

• The Team:

- Training Professionals
- Criticality Safety Subject Matter Experts

• The Goals:

- Determine the construct of the new program
- Recommend an implementation plan for immediate- and long-term use

• The Guidelines:

- DOE Order 426.2
- ANSI/ANS-8.26-2007
- DOE-STD-1135-99
- LANL's Nuclear Criticality Safety Program (SD130)
- LANL's Conduct of Training Manual

• The Background Information:

- File drawers full of records and notes at organizational and individual levels

Description of the Program Development (2)

• The Work:

- -The team interviewed:
 - Criticality Safety Analysts (CSAs)
 - Other subject matter experts (SMEs)
 - Criticality Safety Managers
 - Associated stakeholders
- -To determine the specific needs of the target program

Results validated via:

- -Performance demonstrations
- -Observations
- -Facility walk-downs

The Program – Priority & Resources

Need for expedited approach set by:

- -Cognizant managers; first line to senior management
 - Articulated mission & operational priority
 - Provided direction & resources
 - Navigated & negotiated inter- and intra-organizational expectations and collaborations

• Boots on the ground:

- -Data calls
- -Benchmarking visits
 - DOE Los Alamos Field Office
 - Lawrence Livermore National Laboratory (LLNL)
 - Sandia National Laboratories (SNL)
 - Oak Ridge National Laboratory (ORNL)
 - Pacific Northwest National Laboratory (PNNL)
 - University of New Mexico (UNM)

Results

Program was modeled on ANSI/ANS-8.26-2007 and DOE-STD-1135-99:

• Three phase approach

- -CSA In Training (CSA-IT)
- -CSA Qualified (CSA-Q)
- -CSA Senior Qualified (CSA-SQ)

Ten competencies

- Nuclear Theory
- Criticality Safety Calculation Methods
- Critical Experiments and Data
- Hands-on Experimental Training
- Rules, Standards, and Guides

- Nuclear Criticality Safety Evaluations
- Safety Analysis and Control
- Criticality Accident Alarm System (CAAS) and Criticality Detection Systems (CDS)
- Accountability Practices
- Facility Knowledge

Results (2)

Instructional methods selected based on:

- -Target population
 - Both new and existing staff with unique learning styles & preferences
- -Design and methods had to be flexible
- Availability of renowned industry experts to serve as SMEs and instructors

• In early 2013, "CSA Boot Camp" consisted of:

- -Lectures
- -Independent study
- -Performance demonstrations
- -Examinations
- -Final oral board examination (capstone)

Results (3)

• Within first 2 years of implementation, other needs emerged

(1) Formal mentoring

 Expert- and experience-based instructional methods

(2) Developing a way to qualify analysts to independently perform work

- Result of (2) was four "task qualifications" (TQs):
 - -Calculation Specialist (TQ/CS)
 - -Facility Specialist (TQ/FS)
 - -Independent Review (TQ/IR)
 - Criticality Accident Alarm System Specialist (TQ/CAASS)

Results (4)

- Continuing training & biannual requalification methods incorporated early in program implementation
 - -Multiple training methods used:
 - Required reading
 - Briefings
 - Attendance at seminars and lectures
 - -Incorporated & designed to address:
 - Significant facility system and component changes
 - Procedure changes
 - Selected fundamentals
 - Applicable industry operating experience

Results (5)

November 2016 – major curriculum change

Boot Camp

- Comprehensive & unique
- Also, costly & time consuming
- Analysis performed [again] on competency criteria vs course curricula for:
 - DOE Nuclear Criticality Safety Program (NCSP) Hands-On Course
 - UNM's
 - Nuclear Criticality Safety (NCS) Short Course
 - Assessments & Criticality Safety Evaluations Course
 - Manager's Workshop

Result

- NCSP + UNM Courses satisfied criteria of ANSI/ANS-8.26-2007
- Replacement for the CSA Boot Camp's core academic requirements
 - LANL site requirements would still need to be addressed via local instruction & performance requirements

Conclusions

Conclusions

•The Program demonstrates valid and reliable implementation.

- -The program curricula were developed to meet specific industry criteria and unique site/facility needs.
- -The program may be consistently and repeatedly implemented.

Conclusions (2)

- The Program augments staffing requirements.
 - -Enhances recruiting because it is self-driven, giving much control to the CSA-IT.
 - -Enables more working resources earlier on.
 - For example, by qualifying at the task level, the CSA in training can independently perform a predefined work scope.
 - -Offers progressive growth opportunities, such as:
 - CSA-IT introduces entry-level requirements, including DOE Nuclear Criticality Safety Engineer Training (NCSET) training modules [10] available complex-wide—and LANL requirements;
 - CSA-Q consists of site-level competency requirements categorized as core and facility specific; and
 - CSA-SQ includes expanded and applicable site-wide requirements.
 - Provides a robust continuing training program with weekly and monthly sessions

• The Program has operational impact.

-It is agile, flexible, and dynamic.

- -Site, facility, programmatic, and personal needs and changes are easily addressed.
 - For example, performance requirements are assigned by NCS management based on need and may include individual professional goals, such as the CAASS.
 - It may also incorporate background, i.e., chemical engineering or operations experience.
- -Previous training and qualification records from other sites/organizations can satisfy LANL requirements

Conclusions (4)

- The Program shares and takes advantage of all resources.
 - -Existing industry training is used where appropriate.
 - -NCS management can assign the CSA to areas based on
 - Organizational need
 - CSA expertise
 - Growth opportunity
 - -Provides breadth and depth.
- Colleagues from Sandia and National Security Technologies (NSTec), LLC, attended 2016 courses.

Questions?

Bonus Slides

Program was modeled on ANSI/ANS-8.26-2007 and DOE-STD-1135-99:

• Three phase approach

- -CSA In Training (CSA-IT)
- -CSA Qualified (CSA-Q)
- -CSA Senior Qualified (CSA-SQ)

Ten competencies

- Nuclear Theory
- Criticality Safety Calculation Methods
- Critical Experiments and Data
- Hands-on Experimental Training
- Rules, Standards, and Guides

- Nuclear Criticality Safety Evaluations
- Safety Analysis and Control
- Criticality Accident Alarm System (CAAS) and Criticality Detection Systems (CDS)
- Accountability Practices
- Facility Knowledge