

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment

Axel Hoefer, Oliver Buss

AREVA GmbH Erlangen Radiology, Radiation Protection & Criticality Safety Analysis

ANS Winter Meeting, Washington, D.C., October 29 - November 2, 2017

A AREVA

- **1.** Why validation?
- 2. NUDUNA / MOCABA uncertainty propagation
- **3.** Application Cases (Blind Tests)
- 4. Summary / Final remarks

AREVA NP

Chapter 1

Why validation?

RESTRICTED AREVA

Why validation?

What is our goal?

Optimum predictions (BEPU) – correct for computational bias

- k_{eff} of spent fuel pool
- Power distribution of reactor / cycle prediction

What do we need?

Reliable uncertainty information

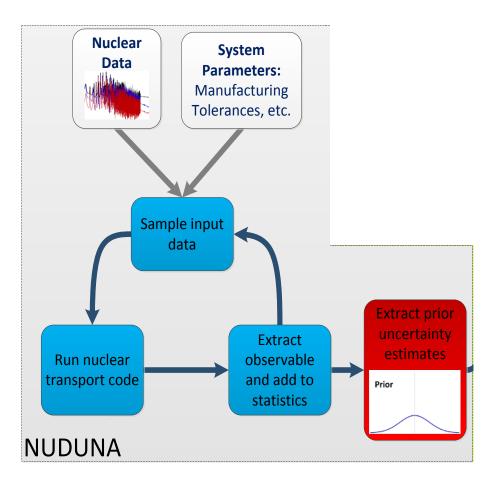
- Nuclear data covariances (ENDF)
- Technological uncertainties (application case & benchmarks)
- Consistent statistical framework
 - Statistical model (Bayes)
 - Computational procedure (Sensitivity or MC)

How do we test a prediction model / procedure?

Blind tests: Predictions of measurements

AREVA NP

NUDUNA / MOCABA Uncertainty propagation



AREVA NP

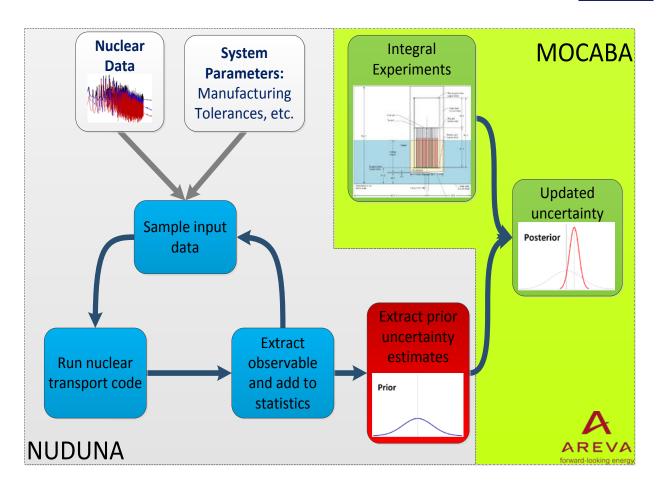
RESTRICTED AREVA

Uncertainty Assessment with NUDUNA / MOCABA @AREVA

NUDUNA: Uncertainty assessment based on Monte Carlo

AREVA NP

p.6


1_

Uncertainty Assessment with NUDUNA / MOCABA @AREVA

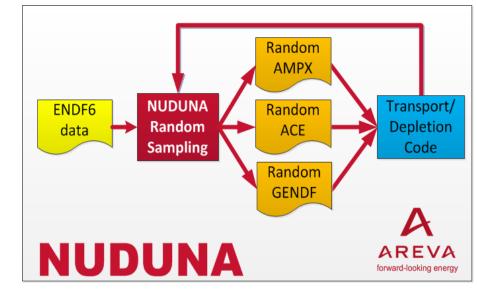
NUDUNA: Uncertainty assessment based on Monte Carlo

2. MOCABA:

Improve predictions by adding measurements (Bayesian updating)

AREVA NP

p.7


1_

NUDUNA: NUclear Data UNcertainty Analysis

Annals of Nuclear Energy 77 (2015), 101ff

Direct sampling of ENDF-6 data

- ENDF/B, JEFF, JENDL, TENDL ...
- Automatic generation of transport code libraries
 - Based on NJOY 99, PUFF IV
 - Support for MCNP, SERPENT, SCALE, WIMSD-4, ALEPH, APOLLO2-A
 - Arbitrary temperatures and broad group structures

Current limitations (to be removed in the future)

- No fission spectra and product yield (Files 5,8) sampling
- No S(α,β) (File 7) sampling
- No isotope-isotope correlations

AREVA NP

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

Annals of Nucl. Energy 77 (2015), 514ff

1. MC sampling of nuclear data (*NUDUNA*):

$$\mathbf{a}_{MC} \propto p(\mathbf{a}) = N(\hat{\mathbf{a}}, \boldsymbol{\Sigma}_{\alpha})$$

mean vector

covariance matrix

- 2. Calculation of integral quantities: MC draws of system parameters $\mathbf{y}_{MC} \coloneqq \left(y_{A,1}(\boldsymbol{\alpha}_{MC}, \mathbf{x}_{MC}), \dots, y_{A,n_A}(\boldsymbol{\alpha}_{MC}, \mathbf{x}_{MC}) \right), \quad y_{B,1}(\boldsymbol{\alpha}_{MC}, \mathbf{x}_{MC}), \dots, y_{B,n_B}(\boldsymbol{\alpha}_{MC}, \mathbf{x}_{MC}) \right)^T$ Appl. Case $\overbrace{0}^{\bullet} \overbrace{0}^{\bullet} \overbrace{0$
- 3. Calculation of prior mean and prior covariance matrix:

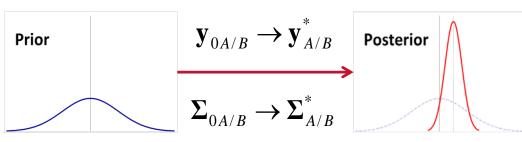
$$\mathbf{y}_{0} = \frac{1}{n_{MC}} \sum_{i} \mathbf{y}_{MC,i} \quad \mathbf{\Sigma}_{0} = \frac{1}{n_{MC} - 1} \sum_{i} (\mathbf{y}_{MC,i} - \mathbf{y}_{0}) (\mathbf{y}_{MC,i} - \mathbf{y}_{0})^{T} - \sum_{i} \sum_$$

p.9

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

Annals of Nucl. Energy 77 (2015), 514ff

4. Evaluation of likelihood function of integral measurements / constraints


 $p(\mathbf{v}_{\mathbf{B}} | \mathbf{y}_{\mathbf{B}}) \propto N(\mathbf{v}_{\mathbf{B}}, \mathbf{\Sigma}_{\mathbf{v}\mathbf{B}})$ Covariance matrix of integral quantities

Measurement vector / linear constraint vector

5. Bayesian updating

Updated model parameters

$$p(\mathbf{y} | \mathbf{v}_{\mathbf{B}}) \propto p(\mathbf{v}_{\mathbf{B}} | \mathbf{y}_{\mathbf{B}}) p(\mathbf{y}) = N(\mathbf{y}^*, \boldsymbol{\Sigma}^*)$$

AREVA NP

p.10

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

Impact of benchmark information determined by similarities to application cases

→ Correlations due to common input parameter uncertainties

Property of AREVA NP - © AREVA NP

All rights reserved, see liability notice

Σ_{0A} Σ_{0AB} Σ_{0AB} Σ_{0B}

Annals of Nucl. Energy 77 (2015), 514ff

Special case: normal distribution model, no constraints

 $\mathbf{y}_{0} = \begin{pmatrix} \mathbf{y}_{0A}^{T}, \mathbf{y}_{0B}^{T} \end{pmatrix}^{T} \qquad \mathbf{\Sigma}_{0} = \begin{pmatrix} \mathbf{\Sigma}_{0A} & \mathbf{\Sigma}_{0AB} \\ \mathbf{\Sigma}_{0AB}^{T} & \mathbf{\Sigma}_{0B} \end{pmatrix}$ $p(\mathbf{y}) \propto \exp(-Q_0/2)$ Prior $Q_0 = (\mathbf{y} - \mathbf{y}_0)^T \boldsymbol{\Sigma}_0^{-1} (\mathbf{y} - \mathbf{y}_0)$ $\mathbf{v}_{0} = \begin{pmatrix} \mathbf{v}_{0A}^{T}, \mathbf{v}_{0B}^{T} \end{pmatrix}^{T} \qquad \boldsymbol{\Sigma}_{V}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{V}^{-1} \end{pmatrix}$ $p(\mathbf{v} | \mathbf{y}) \propto \exp(-Q_v / 2)$ Likelihood $Q_{\nu} = (\mathbf{y} - \mathbf{v})^T \Sigma_{\nu}^{-1} (\mathbf{y} - \mathbf{v})$ $\mathbf{y}^{*} = \begin{pmatrix} \mathbf{y}_{A}^{*T}, \mathbf{y}_{B}^{*T} \end{pmatrix}^{T} \qquad \mathbf{\Sigma}^{*} = \begin{pmatrix} \mathbf{\Sigma}_{A}^{*} & \mathbf{\Sigma}_{AB}^{*} \\ \mathbf{\Sigma}^{*T} & \mathbf{\Sigma}^{*} \end{pmatrix}$ $p(\mathbf{y} \mid \mathbf{v}) \propto \exp(-Q^*/2)$ **Posterior** $Q^* = Q_0 + Q_V = (\mathbf{y} - \mathbf{y}^*)^T \boldsymbol{\Sigma}^{*-1} (\mathbf{y} - \mathbf{y}^*)$ $\mathbf{y}_{A}^{*} = \mathbf{y}_{0A} + \mathbf{\Sigma}_{0AB} \left(\mathbf{\Sigma}_{0B} + \mathbf{\Sigma}_{VB} \right)^{-1} \left(\mathbf{v}_{B} - \mathbf{y}_{0B} \right) \qquad \mathbf{\Sigma}_{A}^{*} = \mathbf{\Sigma}_{0A} - \mathbf{\Sigma}_{0AB} \left(\mathbf{\Sigma}_{0B} + \mathbf{\Sigma}_{VB} \right)^{-1} \mathbf{\Sigma}_{0AB}^{T}$

A AREVA

AREVA NP

p.11

GLLS = 1st order approximation of MOCABA

Annals of Nucl. Energy 77 (2015), 514ff

Apply 1st order series expansion to MOCABA updating formulas

 $\mathbf{y}(\mathbf{\alpha}) \approx \mathbf{y}(\mathbf{\alpha}_0) + \mathbf{S}(\mathbf{\alpha} - \mathbf{\alpha}_0) + \mathbf{X}$

GLLS: posterior distribution of nuclear data vector

Prior
$$p(\alpha) = N(\alpha_0, \Sigma_\alpha)$$
 Posterior $p(\alpha | \mathbf{v}_B) = N(\alpha^*, \Sigma_\alpha^*)$
 $\mathbf{y}_A^* \approx \mathbf{y}_{0A} + \mathbf{S}_A(\alpha^* - \alpha_0) + \mathbf{X}$ $\alpha^* = \alpha_0 + \Sigma_\alpha \mathbf{S}_B^T (\mathbf{S}_B \Sigma_\alpha \mathbf{S}_B^T + \Sigma_{VB})^{-1} (\mathbf{v}_B - \mathbf{y}_{0B})$
 $\mathbf{\Sigma}_A^* \approx \mathbf{S}_A \mathbf{\Sigma}_\alpha^* \mathbf{S}_A^T + \mathbf{X}$ $\mathbf{\Sigma}_\alpha^* = \mathbf{\Sigma}_\alpha - \mathbf{\Sigma}_\alpha \mathbf{S}_B^T (\mathbf{S}_B \Sigma_\alpha \mathbf{S}_B^T + \mathbf{\Sigma}_{VB})^{-1} \mathbf{S}_B \mathbf{\Sigma}_\alpha$

AREVA

AREVA NP

p.12 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer P – ANS Winter Meeting.- October 30, 2017

Annals of Nucl. Energy 77 (2015), 514ff

General MOCABA Framework

◆ Linear constraints → Generalization of Likelihood (Linear Combinations)

 $p(\mathbf{v} | \mathbf{y}) \propto \exp(-Q_V / 2)$ $Q_V = (\mathbf{U}\mathbf{y} - \mathbf{v})^T \Sigma_V^{-1} (\mathbf{U}\mathbf{y} - \mathbf{v})$

- Sum rules for ND updating, e.g. total XS as sum of contributions
- Fixed total power of reactor as sum FA power contributions
- → Generalized Updating Formulas

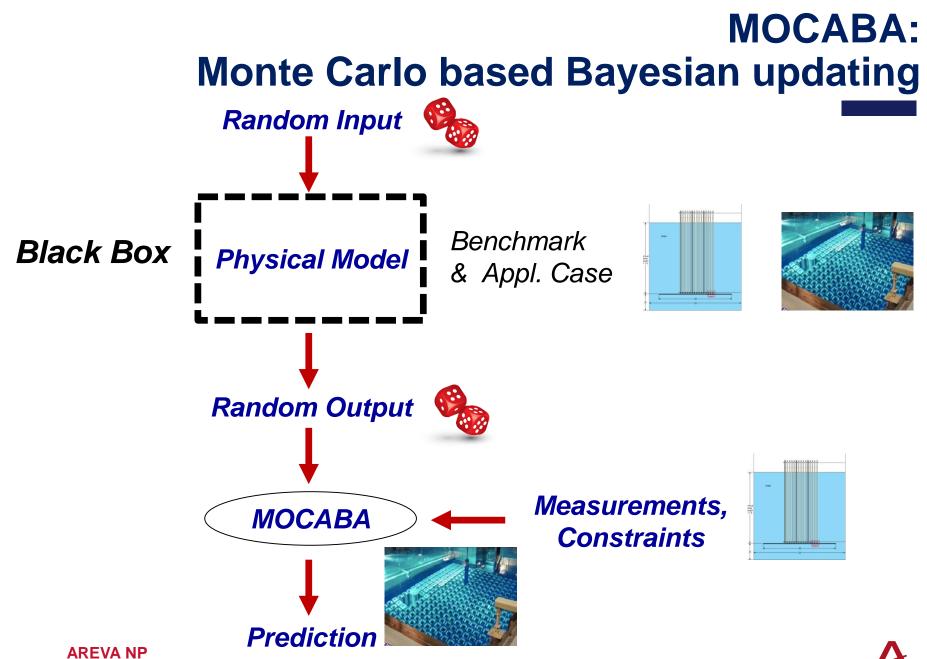
Extension to more general distribution models (e.g. Johnson)

- Useful for strongly non-linear responses to variations in nuclear data, e.g. for transients
- Procedure: Invertible transformation to normal data → Application of MOCABA to transformed data → Back-transformation

AREVA NP

p.13 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer All rig

MOCABA vs. GLLS


GLLS	MOCABA
Adjoint-based PT (internal)	Monte Carlo (external – black box)
1 st order approximation	Non-perturbative
Updating of nuclear data	Direct updating of integral observables or nuclear data
Efficient algorithms for sensitivity computations	Higher computational costs for precise Sensitivities
Unfavorable for large number of responses	Any number of responses

AREVA NP

14 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

p.14

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment - Axel Hoefer p.15 - ANS Winter Meeting.- October 30, 2017

Application Cases (Blind Tests)

AREVA NP

RESTRICTED AREVA

Application to UACSA Benchmark 4

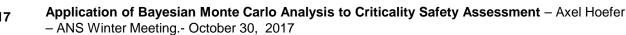
UACSA Benchmark 4

 Role of Integral Experiment Covariance Data for Criticality Safety Validation

21 Benchmark Experiments

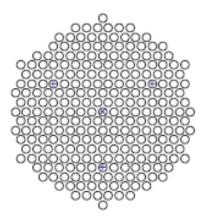
◆ LCT 07 & LCT 39 (ICSBEP)

- Rectangular UO₂ Lattices
- e=4.738 wt.-%
- Pitch:
 - LCT07: 1.26-2.52 cm
 - LCT39: 1.26 cm


Application Cases:

LCT 79 Case 1 & 6 (ICSBEP)

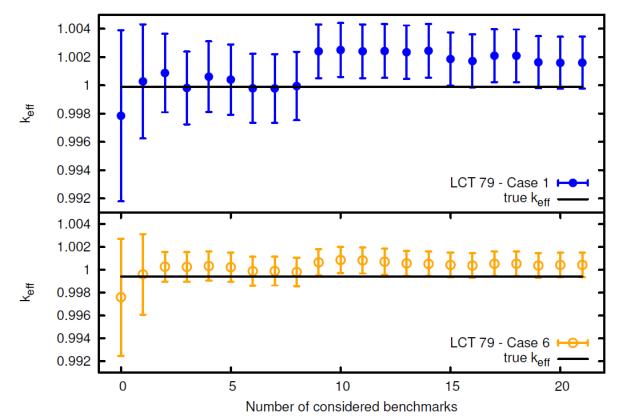
- Hexagonal UO₂ Lattices
- e=4.31 wt.-%
- Pitch:
 - 2 cm for case 1
 - 2.8 cm for case 6


AREVA NP

p.17

Case 1 22 x 22 x 1 Pitch = 1,25

LCT 39- Case 1



LCT 79- Case 1

Application to UACSA Benchmark 4

MOCABA leads to improved mean values and to a massive reduction of uncertainties!

AREVA NP

A AREVA

p.18 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

"Uncertainties for the Ringhals fuel storage due to nuclear data"

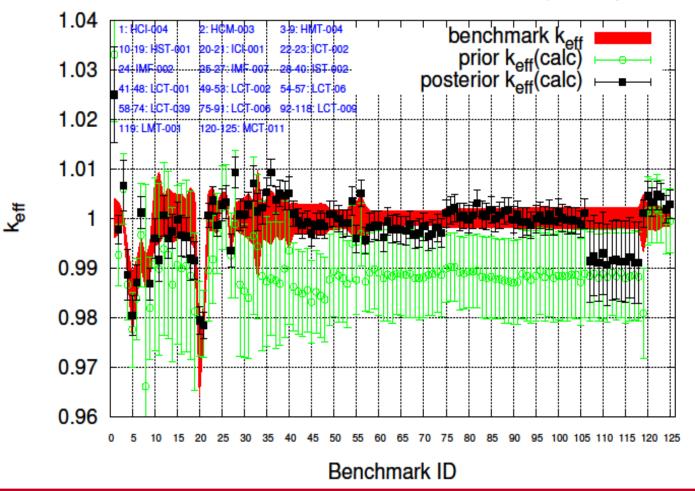
- D.A. Rochman and A.J. Koning
- ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/vattenfall.ringhal.pdf

MCNP model for criticality calculations

- AREVA HTP 17x17-24-1 FA
- ◆ 4.65 wt. % U-235
- Eccentric positioning within stainless steel channels

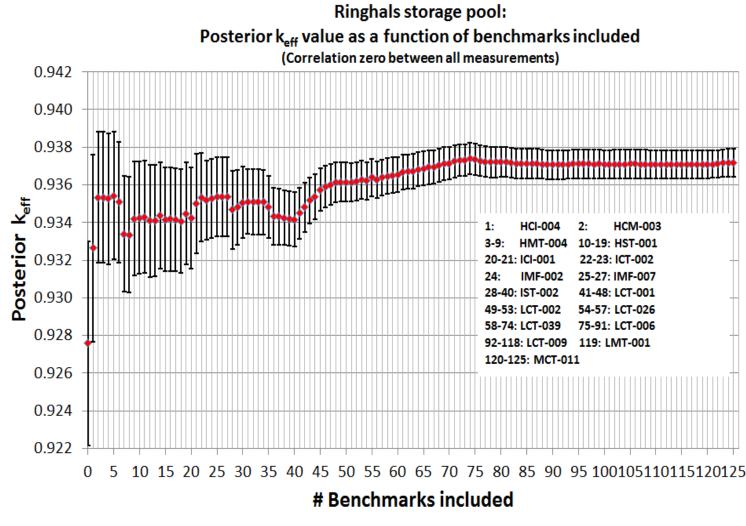
Nuclear Data Simulations with fast TMC (NRG)

- TMC sampling of U-235 (598 samples)
- For each ND sample MCNP calculations for
 - Ringhals storage pool
 - 125 ICSBEP benchmarks (17 sets)


AREVA NP

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer p.19 – ANS Winter Meeting.- October 30, 2017

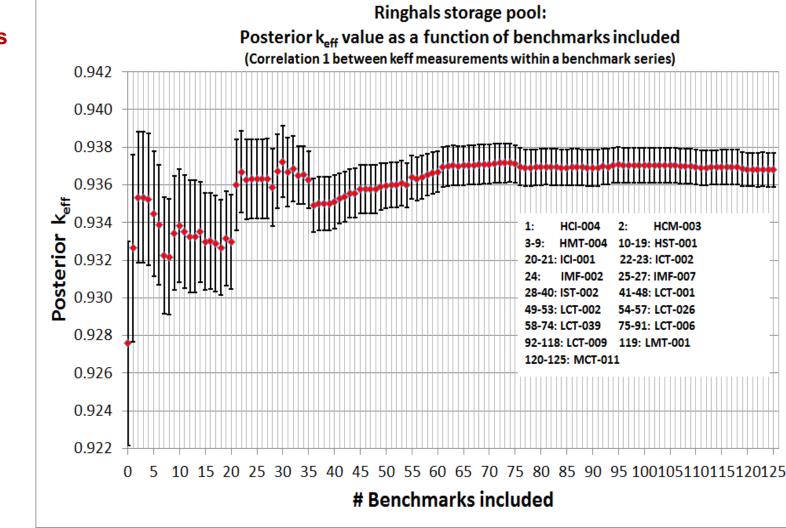
Prediction of the keff values for 17 sets of criticality benchmarks based on the other 16 benchmark sets respectively



p.20

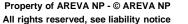
Α

Corr = 0 within series



AREVA NP

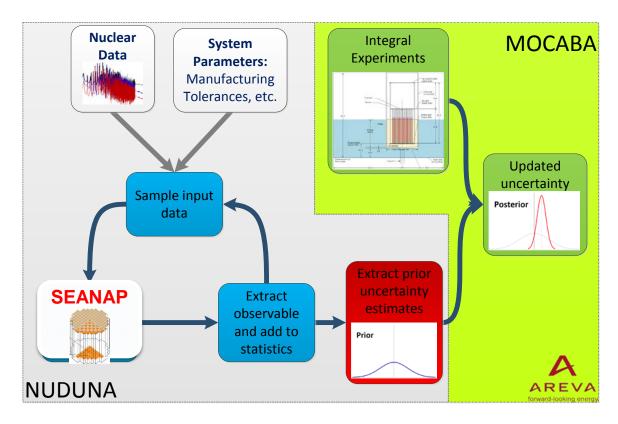
p.21 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer All rights r – ANS Winter Meeting.- October 30, 2017



Corr = 1 within series

AREVA NP

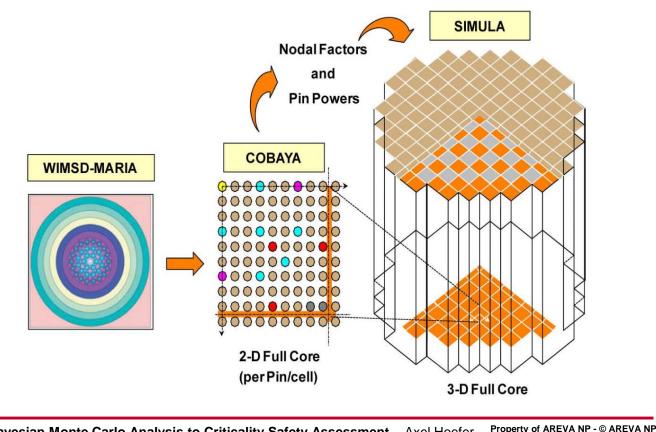
p.22 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer All rights root All rights root and results and resul



Blind test:

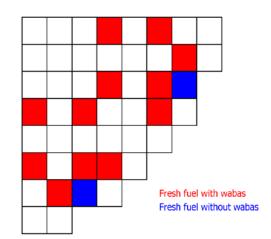
Annals of Nucl. Energy 95 (2016), 148ff

- MOCABA predictions of Cycle B based on measurements of previous Cycle A
- ◆ Compare Cycle B predictions to Cycle B measurements
 → test predictive power of MOCABA framework



p.23 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

- SEANAP: Sistema Español de Análisis de Núcleos de Agua a Presión. System developed at Universidad Politécnica de Madrid for the analysis of PWR reactors
 - Applied by facilities in many cycles of Spanish PWR for the last 25 years


Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer All rights reserved, see liability notice - ANS Winter Meeting.- October 30, 2017

p.24

AREVA NP

PWR core specifications cycle B:

- 157 Fuel Assemblies
- ◆ 2775 MW_t
- Fresh and used fuel
- Wabas as burnable absorber.

Random libraries generated with NUDUNA from ENDF/B-**VII.1**:

U-235 and U-238, Pu-239, Hydrogen, B-10, O-16

AREVA NP

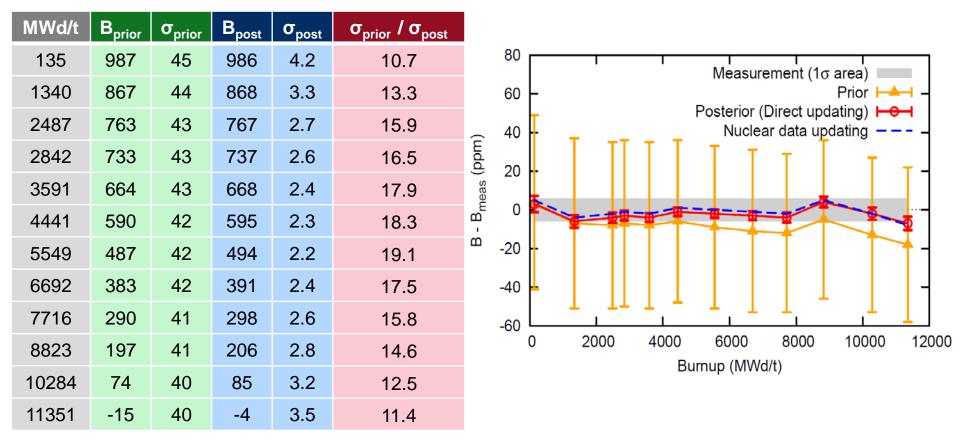
Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer p.25 - ANS Winter Meeting.- October 30, 2017

Application to Core Simulation NUDUNA: N random libraries **SEANAP: Responses:** N core simulations Boron letdown curve FA-wise power distribution WIMS Nuclear Data Library CYCLE A: CYCLE B: **Prior results Prior results MOCABA:** Measurements of CYCLE A Bayesian updating

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment - Axel Hoefer - ANS Winter Meeting.- October 30, 2017

CYCLE B:

Posterior results


Property of AREVA NP - © AREVA NP All rights reserved, see liability notice

p.26

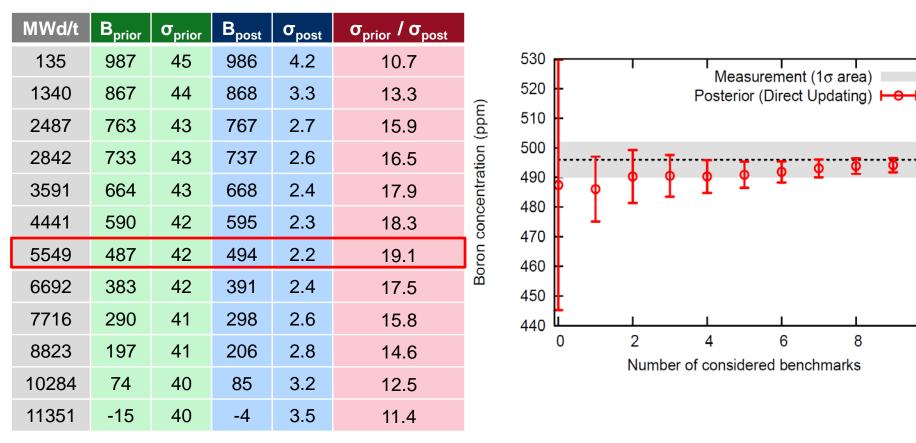
AREVA NP

B = boron concentration / ppm

 σ = one standard deviation (ppm)

AREVA NP

p.27


Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

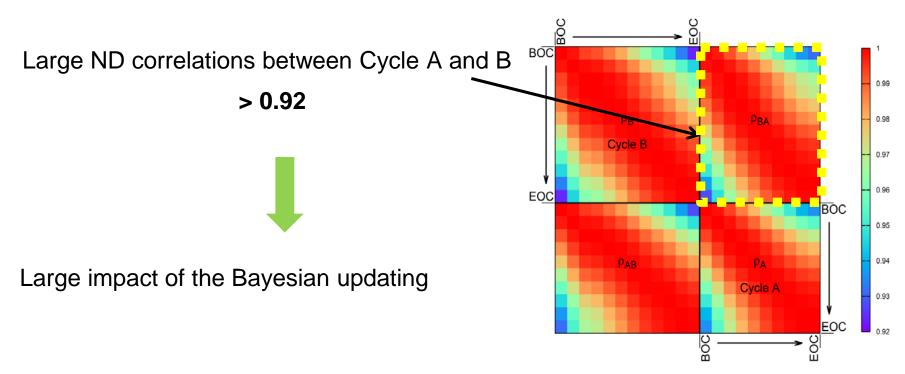
Property of AREVA NP - © AREVA NP All rights reserved, see liability notice

AREVA

B = boron concentration / ppm

σ = 1 standard deviation / ppm

AREVA

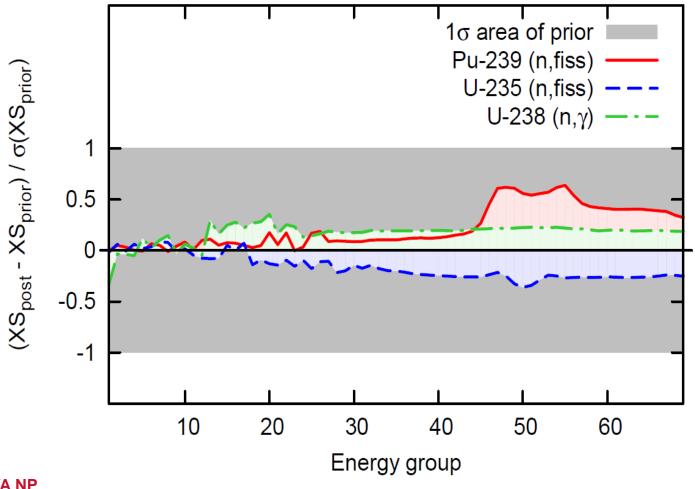

10

8

AREVA NP

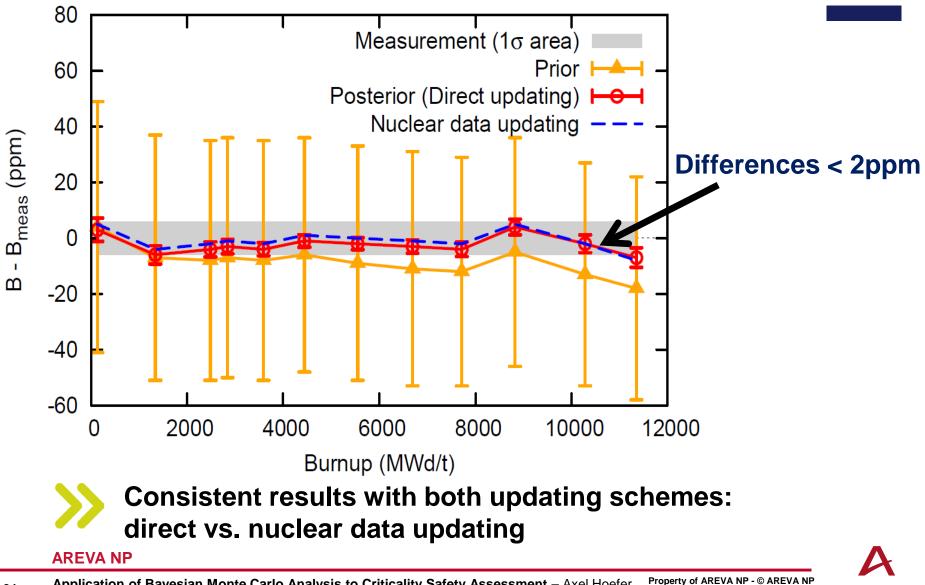
p.28

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer - ANS Winter Meeting.- October 30, 2017


- Posterior boron concentration improves in all cases
- Posterior uncertainty is reduced by one order of magnitude
- All posterior results are within the error band of the measurements

AREVA NP

Property of AREVA NP - © AREVA NP Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer All rights reserved, see liability notice - ANS Winter Meeting.- October 30, 2017


MOCABA updating of 69 group WIMS ND library

AREVA NP

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer – ANS Winter Meeting.- October 30, 2017

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer - ANS Winter Meeting.- October 30, 2017

AREVA

Summary / Final Remarks

AREVA NP

RESTRICTED AREVA

Summary / Final Remarks

MOCABA: Powerful and flexible MC-based Bayesian updating framework

- Non-perturbative alternative to GLLS
- Direct updating of integral observables
- Transport code as black box
- Arbitrarily complex calculation procedures
- Can be combined with any ND MC program
 - NUDUNA, TMC, XSUSA, SAMPLER, NUSS, SANDY ..

- Applied by different institutions to CSA and reactor physics
 - ◆ AREVA, GRS, AMEC Foster Wheeler, PSI, EPFL

Request to ND community

Keep high quality benchmarks for validation

AREVA NP

p.33 Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment – Axel Hoefer

References

[1] A. Hoefer, O. Buss, M. Hennebach, M. Schmid, D. Porsch

MOCABA: A general Monte Carlo-Bayes procedure for improved predictions of integral functions of nuclear data Annals of Nuclear Energy Volume 77, March 2015, Pages 514-521

[2] O. Buss O., A. Hoefer, J. Neuber

NUDUNA – nuclear data uncertainty analysis.

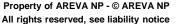
Proc. International Conference on Nuclear Criticality (ICNC 2011), Edinburgh, Scotland.

[3] C. J. Diez, O. Buss, A. Hoefer, D. Porsch, O. Cabellos

Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations Annals of Nuclear Energy Volume 77, March 2015, Pages 101–114

[4] E. Castro, C. Ahnert, O. Buss, N. García-Herranz, A. Hoefer, D. Porsch

Improving PWR core simulations by Monte Carlo uncertainty analysis and Bayesian inference


Annals of Nuclear Energy Volume 95, May 2016, Pages 148–156

[5] D.J. Siefman, M. Hursin, P. Grimm, A. Pautz

Case Study of Data Assimilation Methods with the LWR-Proteus Phase II Experimental Campaign

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16-20, 2017, on USB (2017)

AREVA NP

ARFVA

p.34