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Motivation

• Growing dataset of neutron multiplication 

benchmarks experiments/evaluations

o Culmination of several years of sub-critical experiment research

o Goal is to validate nuclear data and computational methods

• BeRP-Ni (published in 2014)

o Executed in 2012, ICSBEP evaluation published in 2014

• BeRP-W (published in 2016)

o Sub-critical tungsten-reflected α-phase Pu

o Executed in 2012, ICSBEP evaluation published in 2016 

• SCRαP (to be published in 2018?)

o Sub-critical copper/poly-reflected α-phase Pu

o Executed in 2016, ICSBEP evaluation published in 2018 

• Neptunium (to be published in 2020?)

o Sub-critical Neptunium w/various reflectors, 

in design phase
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subcritical configurations 
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Motivation

• Neutron multiplication inference measurements record list-mode data

o Includes only time and detector corresponding to each event

• Observables of interest in advanced subcritical experiments include 

[1]:

o Feynman histogram (Cn): histogram showing the relative frequencies of 

various multiplets

o Singles (R1): rate of detection of single neutrons from a fission chain

o Doubles (R2): rate of detection of 2 neutrons from the same fission chain 

o Leakage multiplication (ML): average number of neutrons escaping the 

system per neutron injected into the system 

• The goal is a quantitative comparison of measured and simulated 

histograms, for radiation transport code and nuclear data validation 
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Feynman histograms

• Method of creating a Feynman histogram from list-mode data:

o This is usually done for 1E5-1E6 time gates 



Los Alamos National Laboratory

Feynman histograms 

• Leakage multiplication is related to the deviation of the histogram from 

a Poisson distribution 

• To date, no one has rigorously evaluated or established a suitable 

figure of merit (FOM) to quantify the degree of discrepancy between 

two Feynman histograms



Los Alamos National Laboratory

Past FOM equation 

• Typically a FOM that takes into account the differences between each 

bin of the histograms, as compared to the magnitude of the 

combination of the corresponding uncertainties, is used [2]

• Because the uncertainties corresponding to the larger multiplet bins 

are inherently larger than those of the smaller multiplet bins, this type 

of FOM puts more weight on differences between smaller multiplet bins

• New proposed FOM also takes into account sensitivity of leakage 

multiplication (which is most sensitive to higher multiplet bins) to each 

bin in the histogram
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Past FOM equation

• 𝑴𝒊 and 𝑺𝒊 represent the ith bins of the simulated and measured Feynman 

histograms

• 𝝈𝑴,𝒊
𝟐 and 𝝈𝑺,𝒊

𝟐 are the variances corresponding to these bins

• The ideal FOM value is 1

o The discrepancy between simulated and measured histograms is equal to 

the combined associated uncertainty.
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Deriving an improved figure of merit 

• The sensitivities of leakage multiplication to each bin in the Feynman 

histogram were calculated 

o Standard uncertainty propagation

Chain rule:

Chain rule 

for partial derivatives:

• The sensitivities are normalized and added as an additional factor to 

the past FOM
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Uncertainty propagation

• Calculating leakage 

multiplication (𝑴𝑳) from 

each bin in the Feynman 

histogram (𝑪𝒏 𝝉 ) using the 

Hage-Cifarelli formalism 

based on the Feynman 

Variance-to-Mean method 

[1,3]

• Assumptions:

o Point source of 

spontaneous fission 

neutrons

o No (a,n) contribution; 

spontaneous and induced 

fission only
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Figure of merit equation 

• Ideal value is still unity

o Sensitivities are normalized and sum to unity
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Test case

• Sphere of pure Pu-240 and Pu-239

• Fission rate = 130423 s-1

• Detector efficiency = 0.012

• Tube dead time = 4.0 ms

• Neutron lifetime = 40.0 ms

• Count time = 300 s

• ML = 3.0
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Preliminary results

• Important to keep in mind: leakage multiplication is related to the 

deviation of the Feynman histogram from a Poisson distribution 

• Calculated ML=2.9332
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Preliminary results

• Unperturbed calculated ML=2.9332

• Each multiplet bin perturbed by 50 

counts 

o Consistent downward bias of 

expected leakage multiplication

Multiplet bin 1 10 20 30

Sensitivity -3.0211E-5 -1.5158E-4 -4.7141E-5 3.6906E-4

Expected 𝑀𝐿 2.9317 2.9256 2.9308 2.9516

Calculated 𝑀𝐿 2.9392 2.9322 2.9384 2.9591
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Preliminary results

• Each multiplet bin perturbed such that: 𝑀𝒏 − 𝑆𝒏
2=𝜎𝑀,𝒏

2 + 𝜎𝑆,𝒏
2
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2=𝟏𝟎(𝜎𝑀,𝒏

2 + 𝜎𝑆,𝒏
2 ሻ

Multiplet bin 1 10 20 30

Past FOM 1.2647 1.2647 1.2647 1.2647

New FOM 1.0000 1.2480 1.1210 1.5261
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Preliminary results

• Past FOM isn’t affected by which multiplet bin is perturbed, but only by 

how much it is perturbed

• New FOM follows the trend of sensitivity of ML to the perturbed 

multiplet bins
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Conclusions and future work

• The FOM that has typically been used to quantitatively compare 

Feynman histograms puts more weight on discrepancies at multiplet

bins with lower uncertainties  

o Leakage multiplication, the final observable of interest, is most sensitive to 

multiplet bins that increase or decrease the amount of deviation of the 

histogram from a Poisson distribution 

• New FOM puts more weight on discrepancies at bins that affect the 

amount of deviation of the histogram from a Poisson distribution

• This improved FOM will provide a better quantitative comparison 

between measured and simulated Feynman histograms for radiation 

transport code and nuclear data validation applications 

o The new FOM will be applied to comparisons of Feynman histograms 

between measured data and simulated data produced by various codes 

that take into account the correlated physics of fission neutrons [4]
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