Determination of the Optimal Time Bin Width for the Rossi-alpha Analysis of Highly Subcritical Fast Metal Systems

Kim Klain

ANS Winter Meeting October 31, 2017

LA-UR-17-29890

The predictive capabilities of MCNP®6 for neutron noise experiments are studied.

The effect of the choice of the time bin width for Rossi-alpha analysis for fast, subcritical systems is shown to be significant. An "optimal" time bin width was selected by minimizing the error in the fit parameters.

Criticality and the Prompt Neutron Decay Constant

Systems below a k_{eff} of 0.95 are generally considered "deeply subcritical"

Time behavior of the prompt neutron chain depends on the critical state of the system

$$\frac{dn}{dt} = \alpha n(t)$$

- $\alpha > \mathbf{0} \rightarrow \mathbf{supercritical}$
- $\alpha = \mathbf{0} \rightarrow \text{prompt critical}$
- $\alpha < \mathbf{0} \rightarrow \text{sub-prompt critical}$

Rossi-alpha Theory

Neutrons originating from the same initial fission event are correlated in time.

Historical Rossi-alpha measurements required gating hardware that necessitated selecting a fixed time bin width.

Many modern neutron noise measurements record time-stamped counts, allowing for the selection of analysis method to be chosen post-measurement.

Monte Carlo N-Particle 6

MCNP6 can simulate list-mode data:

- Simulations must be run in analog mode
- Simulations cannot be run in MPI mode
- ptrac file must be written in binary format

10035191690.87059
10035191689.20313
10035191684.16972
10035191691.67078
10035191689.24472
10035191694.43176
10035191692.64740
10035191686.76237
10035191685.77344
2860361396.20510
2860361409.82146
2860361414.89785
2401813372.04363
18722673899.28493
27312955763.88393
27989481182.50493
29228832099.21028
314421464.47605
314421470.23480
314421470,49030
314421458.02021
314421456.55176
314421457.66738
38418787101.66085
25426334978.87869
33635592966.54404
18793043613.40993
43419192793.41262

3

3

MPKRA is a Rossi-alpha analysis code developed to obtain the prompt neutron decay constants for coupled reactors from list-mode data.

User provides:

- List-mode filename
- Total measurement time in seconds
- Time window size in microseconds
- Time bin width in microseconds*
- Number of exponentials to fit to the data

MPKRA process:

- 1. Data are sorted in ascending time
- 2. Data are binned using Type I binning
- 3. A histogram is created from the binned data
- 4. A sum-of-exponentials curve is fit to the data
- 5. The prompt neutron decay constants are printed

Computational Hardware and Capabilities

Moonlight (MCNP6):

- 308 nodes
- Two 2.6 GHz eight-core Intel Xeon processors/node
- 32 GB RAM/node
- Two Nvidia Tesla GPU cards/node
- 488 TFlops

Laptop (MPKRA):

- MacBook Air
- 2.2 GHz Intel Core i7
- 8GB RAM

Workflow

Verification of MCNP6 List-Mode Data Generation and MPKRA Processing

Ensure that:

- MCNP6/ptrac is producing list-mode data as expected
- MPKRA is sorting, binning and curve-fitting correctly

Prompt Neutron Decay Constant (10 ⁴ inverse seconds)					
Benchmark	Measured	MCNP5 MCNP6/		MCNP6/ptrac	
		(Mosteller)	kopts		
Jezebel-Pu	-64 ± 1	-65 ± 1	-63 ± 1	-65.082 ± 0.004	
Jezebel-U233	-100 ± 1	-108 ± 1	-103 ± 2	$-109.525{\pm}0.009$	
THOR	-19 ± 1	-20 ± 1	-21.0 ± 0.4	-19.48 ± 0.02	

$$\alpha = \frac{k\left(1-\beta\right)-1}{k\Lambda}$$

- Plutonium sphere (BeRP ball as starting point)
- Increase density to bring system closer to critical level

Density (g/cc)	k _{eff}
19.604	0.77427 ± 0.00011
20.0	0.78974 ± 0.00011
21.0	0.82496 ± 0.00011
22.0	0.85992 ± 0.00012
23.0	0.89427 ± 0.00012
24.0	0.92808 ± 0.00012
25.0	0.96178 ± 0.00012
26.0	0.99476 ± 0.00014

Effect of the Time Bin Width Size on Estimating α for Fast, Bare Metal Systems

Effect of the Time Bin Width on the Determination of the Prompt Neutron Decay Constant for a Hypothetical Pu Sphere of Varying Density

Effect of the Time Bin Width Size on Estimating α for Fast, Bare Metal Systems

Predicted Prompt Neutron Decay Constant as a Function of the Time Bin Width for a Hypothetical Pu Sphere of Various Densities

Prompt Neutron Decay Constants for a Hypothetical Pu Sphere of Varying Densities

$\alpha \; (\mu \text{sec}^{-1})$						
Density (g/cc)	kcode	ptrac/Rossi-alpha	C/E			
19.604	-136.550 ± 0.005	-127.90 ± 0.02	1.068			
20.0	-125.714 ± 0.005	-129 ± 1	0.974			
21.0	-104.956 ± 0.004	-104.06 ± 0.07	1.009			
22.0	-83.371 ± 0.004	-83.90 ± 0.04	0.994			
23.0	-63.591 ± 0.005	-65.1 ± 0.2	0.977			
24.0	-43.289 ± 0.005	-43.95 ± 0.09	0.985			
25.0	-23.511 ± 0.006	-24.30 ± 0.02	0.967			
26.0	-4.15 ± 0.03	-5.170 ± 0.004	0.803			

Mihalczo's HEU Cylinders Measurements

27.94cm-diameter HEU cylinders of varying thicknesses

	$\alpha_{iso} \ (\mu sec^{-1})$			
Experiment	Measured	MCNP6/ptrac	C/E	
8.255 cm	-5.05	-5.168 ± 0.002	1.02	
7.314 cm	-16.70	-17.15 ± 0.02	1.03	
6.676 cm	-25.26	-25.85 ± 0.02	1.02	
6.042 cm	-34.55	-36.65 ± 0.03	1.06	

- MCNP6, using the ptrac capability, is a viable tool for detailed planning of neutron noise experiments.
- As a multiplying system's decay constant increases in magnitude, smaller time bin sizes are needed for appropriate application of the Rossi-alpha method.
 - Even modern measurement systems may not have the resolution to observe the prompt neutron decay constant for a deeply subcritical system.

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.