OS Alamos NATIONAL LABORATORY EST.1943

Minimizing Detector Response in Neutron Multiplicity Measurements

— EST.1943 ——

Alex McSpaden, Mark Nelson, Jesson Hutchinson

Outline

- Introduction/Motivation
- Theory
- Methods Measured and Simulated
- Results
- Conclusions

Introduction

- Neutron multiplicity measurements usually are accompanied by simulations
 - Comparisons inform on the accuracy of the simulation model
- Both experiments and simulation have sources of error and uncertainty
 - Positions of detectors and other objects
 - Affects efficiency, and therefore count rates
 - Detector response can be complex to depict appropriately
- A parameter that minimizes reliance on detector response would allow for more direct comparison between a measurement of a source and its respective simulation

Introduction (cont.)

- Manipulation of Hage-Cifarelli formalism [1] creates a detector independent parameter
- Lower fidelity simulations performed at Los Alamos National Laboratory have previously shown that such a parameter (termed Sm₂) does behave independent of detector efficiency [2]
- Need for testing with experimental data and more detailed simulations

Theory

- From Hage-Cifarelli formalism:
 - $R_1 = \varepsilon M_L \overline{\nu_{S1}} F_S$

•
$$R_2 = \varepsilon^2 M_L^2 \left(\overline{\nu_{S2}} + \frac{M_L - 1}{\overline{\nu_{I1}} - 1} \overline{\nu_{S1} \nu_{I2}} \right) F_s$$

- Both depend on the properties of the nuclear material and detector response
- Eliminate ε by taking the ratio

$$Sm_{2} = \frac{R_{2}}{R_{1}^{2}} = \frac{\overline{\nu_{S2}} + \frac{M_{L} - 1}{\overline{\nu_{I1}} - 1} \overline{\nu_{S1} \nu_{I2}}}{\overline{\nu_{S1}}^{2} F_{S}}$$

- Sm₂ therefore does not depend on detector response
 - Should be independent of factors like solid angle, and therefore detector separation distance
- M_L = Leakage multiplication $F_{\rm s}$ = Spontaneous fission rate $\overline{v_{S/In}} = n$ th reduced moment of induced/spontaneous fission neutron multiplicity distribution Е

Theory (cont.)

 From standard error propagation

$$\sigma_{Sm_2} = Sm_2 \sqrt{4\left(\frac{\sigma_{R_1}}{R_1}\right)^2 + \left(\frac{\sigma_{R_2}}{R_2}\right)^2}$$

• Uncertainty in ratio dependent on uncertainties in count rates

- Other possible ratios (e.g. . R_3/R_2R_1 and R_3/R_1^3)
 - Inclusion of triples rate leads to worse statistics, more complicated math

Method – Measured Data

- Five-minute measurements performed with 4.5 kg sphere of α-phase plutonium [3-6]
 - "BeRP ball"
 - ~6% ²⁴⁰Pu
- Detector was the LANL NoMAD
 - Series of ³He tubes in highdensity polyethylene matrix
- Ten cases measured between 30-77.5 cm

Method – Measured Data (cont.)

- NoMAD outputs list of interactions
 - Which tube interaction happened in and at what time
- Processed with Momentum [7]
 - Implements random time binning [8] to create Feynman histograms
 - Calculates Rossi-*α* distribution

Method – Measured Data (cont.)

- Momentum uses histogram moments to produce count rates
 - R_1, R_2
 - Uncertainties based on covariance matrix
- Additionally, computes parameters such as multiplication and Feynman-Y

Method – Simulated Data

Graphic made with MCNP Visual Editor [10]

- Simulations performed with MCNP[®] version 6.1.1 [9], ENDF/B-VII.1 cross sections
- Replicates the five-minute measurement
- MCNP Ptrac file manipulated with mcnptools to mimic NoMAD output
 - Accounts for dead time
 - Processed in the same fashion

Results – Singles Rates

- If looking at the singles rate, no consistent trend
 - Some simulations overestimate by as much as 4%
 - Some underestimate by almost 2%

Results – Doubles Rates

- This continues with the doubles rate R2
 - Some simulations overestimate, some underestimate

Results – Sm₂

More consistent trend

- Most simulations overestimate
- Can use the overestimations to make more informed changes to model
 - From Sm2 equation, overestimation could be due to low spontaneous fission rate or high multiplication

$$Sm_{2} = \frac{\overline{\nu_{S2}} + \frac{M_{L} - 1}{\overline{\nu_{I1}} - 1}\overline{\nu_{S1}\nu_{I2}}}{\overline{\nu_{S1}}^{2}F_{S}}$$

Results – Sm₂ (cont.)

- Both simulated and measured data fit to a flat line
 - Shows independence from detector efficiency as expected
- Simulation results relatively close to their measured counterparts
 - Within 5.5%
 - Weighted averages within 2%

Conclusions

- *Sm*₂ minimizes detector response
 - Mostly depends on the nuclear material and any reflecting components
- Parameter should allow for much more direct comparison between simulations and experiments involving nuclear material
 - *Sm*₂ indicates accuracy of model, not accuracy of detector positions or other detector parameters
- Models of experiment can be less detailed due to omission or simplification of detector
 - Only need a way to produce the count rate moments

Limitations and Assumptions

Hage-Cifarelli formalism uses some assumptions

- Insignificant detector dead time, induced fissions occur at the same time as emission of their inducing neutron, point sources, etc.
- Equations shown for count rates, Sm_2 , assume (α, n) emission negligible
 - Shouldn't affect outcome, just the equations
- Any reflectors used in detectors may have an effect (however small) on Sm_2 value

Future Work

- Re-derive Sm_2 equation using original Hage-Cifarelli expressions that include (α, n) emission
- Push detector independence to the limit
 - Test other types of detectors, run simulations with no detectors
 - Have tested detector-less models with MCNP, working on PARTISN simulations
- Explore relationship between reflecting materials and Sm₂

References

- 1. D.M. CIFARELLI, W. HAGE, "Models for a Three-Parameter Analysis of Neutron Signal Correction Measurements for Fissile Material Assay." *Nuclear Instruments and Methods in Physics Research Section A*, 252 550-563 (1986).
- 2. M. A. SMITH-NELSON, J.D. HUTCHINSON, "The Sm2 Ratio for Evaluating Neutron Multiplicity Models." LA-UR-14-29047, Los Alamos National Laboratory, (2014).
- 3. J. HUTCHINSON, T. VALENTINE, "Subcritical Measurements of a Plutonium Sphere Reflected by Polyethylene and Acrylic." Nucl. Sci. Eng., 161, 357-362, 2009.
- 4. J. HUTCHINSON, D. LOAIZA, "Plutonium Sphere Reflected by Beryllium." PU-MET-FAST-038, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03, Nuclear Energy Agency, Organisation for Economic Co-operation and Development (Sep. 2007).
- 5. B. RICHARD, J. HUTCHINSON, "Nickel-Reflected Plutonium-Metal-Sphere Subcritical Measurements." FUND-NCERC-PU-HE3-MULT-001, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03, Nuclear Energy Agency, Organisation for Economic Co-operation and Development (Sep. 2014).

- 6. B. RICHARD, J. HUTCHINSON, "Tungsten-Reflected Plutonium-Metal-Sphere Subcritical Measurements." FUND-NCERC-PU-HE3-MULT-002, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03, Nuclear Energy Agency, Organisation for Economic Co-operation and Development (Sep. 2016).
- 7. M. SMITH-NELSON, "Momentum: version 0.36.3," LANL Software, March 29, 2015.
- 8. T. CULTER, M.A. SMITH-NELSON, J.D. HUTCHINSON "Deciphering the Binning Method Uncertainty in Neutron Multiplicity Measurements." LA-UR-14-23374, Los Alamos National Laboratory, (2014).
- 9. J.T. GOORLEY et. al., "Initial MCNP6 Release Overview," Nuclear Technology, 180, 298-315 (2012).
- 10. "The Visual Editor for MCNP". Retrieved from http://www.mcnpvised.com/visualeditor/visualeditor.html

Los Alamos National Laboratory

Thanks! Contact: mcspaden@lanl.gov

Verifying Uncertainty Formula

- Simulated large numbers of "experiments" by creating random count rate data
 - Assumed Gaussian distribution for count rates
 - Computed and *Sm*₂ value for each set of random rates

- Two tests for computed standard deviation:
 - Chebyshev Inequality
 - Minimum percentage of values must be within *x* standard deviations of the mean
 - 75% within two σ
 - 50% within $\sqrt{2} \sigma$
 - Computed $\sigma = \sqrt{E[x^2] + E[x]^2}$ for the set of Sm_2 values, compared to formula

Verifying Uncertainty, cont.

• Three BeRP Ball Cases:

- NoMAD 30cm away
 - High R_1, R_2
- NoMAD 77.5 cm away
 - Low R_1, R_2
- "Barebones" simulation model
 - Just tracking particles leaving ball
 - Very High R_1, R_2
- One Cf-252 Measurement
 - NoMAD 80.2 cm away
 - Low R_1 , Lower R_2
- 50 million trials

Case	R_1	R ₂
BeRP 30 cm	1.687×10^{4}	5.726×10^{3}
BeRP 77.5 cm	4.458×10^{3}	4.030×10^{2}
"Barebones" Simulation	8.438×10^{5}	1.419×10^{7}
Cf-252 80.2 cm	1.564×10^{3}	1.188×10^{1}

Verifying Uncertainty, cont.

- All cases have great agreement between theoretical and experimental σ_{Sm_2}
 - <<1% difference
- Chebyshev inequality also passed with flying colors
 - ~95% within two σ
 - Follows usual behavior of normal distributions
 - >84% within $\sqrt{2} \sigma$

Case	Difference in σ_{Sm_2}
BeRP 30 cm	-0.02%
BeRP 77.5 cm	0.005%
"Barebones" Simulation	0.007%
Cf-252 80.2 cm	0.02%

Computing Leakage Multiplication

 Given an Sm₂ value, it is possible to solve for M_L if spontaneous fission rate and multiplicity distribution is known

 $M_L = 1 + \frac{(\overline{\nu_{I1}} - 1) \left(Sm_2 \overline{\nu_{S1}}^2 F_S - \overline{\nu_{S2}}\right)}{\overline{\nu_{S1} \nu_{I2}}}$

 Used simulation F_s for both measured and simulated data

- Average of cases gives 3.646 for measurements, 3.671 for simulations
 - 0.69% difference
- Using Momentum, averages for leakage multiplication become 3.438 for measured, 3.463 for simulated
 - 0.74% difference