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Introduction

• Neutron multiplicity measurements usually are accompanied by 
simulations
• Comparisons inform on the accuracy of the simulation model

• Both experiments and simulation have sources of error and uncertainty
• Positions of detectors and other objects

• Affects efficiency, and therefore count rates

• Detector response can be complex to depict appropriately
• A parameter that minimizes reliance on detector response would allow 

for more direct comparison between a measurement of a source and its 
respective simulation
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Introduction (cont.)

• Manipulation of Hage-Cifarelli formalism [1] creates a detector 
independent parameter

• Lower fidelity simulations performed at Los Alamos National 
Laboratory have previously shown that such a parameter (termed 𝑺𝑺𝒎𝒎𝟐𝟐) 
does behave independent of detector efficiency [2]

• Need for testing with experimental data and more detailed simulations 
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Theory

• From Hage-Cifarelli formalism:
• 𝑅𝑅1 = 𝜀𝜀𝑀𝑀𝐿𝐿𝜈𝜈𝑆𝑆𝑆𝐹𝐹𝑠𝑠
• 𝑅𝑅2 = 𝜀𝜀2𝑀𝑀𝐿𝐿

2 𝜈𝜈𝑆𝑆𝑆 + 𝑀𝑀𝐿𝐿−1
𝜈𝜈𝐼𝐼𝐼−1

𝜈𝜈𝑆𝑆𝑆𝜈𝜈𝐼𝐼𝐼 𝐹𝐹𝑠𝑠
• Both depend on the properties 

of the nuclear material and 
detector response

• Eliminate 𝜺𝜺 by taking the ratio

𝑆𝑆𝑚𝑚2 =
𝑅𝑅2
𝑅𝑅12

=
𝜈𝜈𝑆𝑆𝑆 + 𝑀𝑀𝐿𝐿 − 1

𝜈𝜈𝐼𝐼𝐼 − 1 𝜈𝜈𝑆𝑆𝑆𝜈𝜈𝐼𝐼𝐼
𝜈𝜈𝑆𝑆𝑆 2𝐹𝐹𝑠𝑠

• 𝑺𝑺𝒎𝒎𝟐𝟐 therefore does not depend 
on detector response

• Should be independent of 
factors like solid angle, and 
therefore detector separation 
distance

𝑀𝑀𝐿𝐿 = Leakage multiplication
𝐹𝐹𝑠𝑠 = Spontaneous fission rate
𝜈𝜈𝑆𝑆/𝐼𝐼𝐼𝐼 = 𝑛𝑛th reduced moment of 
induced/spontaneous fission neutron 
multiplicity distribution
𝜀𝜀 = Total efficiency
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Theory (cont.) 

• From standard error 
propagation

𝜎𝜎𝑆𝑆𝑚𝑚2 = 𝑆𝑆𝑚𝑚2 4
𝜎𝜎𝑅𝑅1
𝑅𝑅1

2

+
𝜎𝜎𝑅𝑅2
𝑅𝑅2

2

• Uncertainty in ratio dependent 
on uncertainties in count rates

• Other possible ratios (e.g. . 
𝑅𝑅3/𝑅𝑅2𝑅𝑅1 and 𝑅𝑅3/𝑅𝑅13)

• Inclusion of triples rate leads to 
worse statistics, more 
complicated math
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Method – Measured Data

• Five-minute measurements 
performed with 4.5 kg sphere 
of 𝜶𝜶-phase plutonium [3-6]

• “BeRP ball”
• ~6% 240Pu

• Detector was the LANL 
NoMAD

• Series of 3He tubes in high-
density polyethylene matrix

• Ten cases measured between 
30-77.5 cm
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Method – Measured Data (cont.)

• NoMAD outputs list of 
interactions

• Which tube interaction 
happened in and at what time

• Processed with Momentum [7]

• Implements random time 
binning [8] to create Feynman 
histograms

• Calculates Rossi-𝛼𝛼 distribution
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Method – Measured Data (cont.)

• Momentum uses histogram 
moments to produce count 
rates

• 𝑅𝑅1,𝑅𝑅2
• Uncertainties based on 

covariance matrix
• Additionally, computes 

parameters such as 
multiplication and Feynman-Y
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Method – Simulated Data

• Simulations performed with 
MCNP® version 6.1.1 [9], 
ENDF/B-VII.1 cross sections

• Replicates the five-minute 
measurement

• MCNP Ptrac file manipulated 
with mcnptools to mimic 
NoMAD output

• Accounts for dead time
• Processed in the same 

fashionGraphic made with MCNP Visual Editor [10]
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Results – Singles Rates

• If looking at the singles rate, 
no consistent trend 

• Some simulations 
overestimate by as much as 
4%

• Some underestimate by 
almost 2%
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Results – Doubles Rates

• This continues with the 
doubles rate R2

• Some simulations 
overestimate, some 
underestimate
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Results – Sm2

• More consistent trend

• Most simulations overestimate

• Can use the overestimations to 
make more informed changes to 
model

• From Sm2 equation, 
overestimation could be due to 
low spontaneous fission rate or 
high multiplication

𝑆𝑆𝑚𝑚2 =
𝜈𝜈𝑆𝑆𝑆 + 𝑀𝑀𝐿𝐿 − 1

𝜈𝜈𝐼𝐼𝐼 − 1 𝜈𝜈𝑆𝑆𝑆𝜈𝜈𝐼𝐼𝐼
𝜈𝜈𝑆𝑆𝑆 2𝐹𝐹𝑠𝑠
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Results – Sm2 (cont.)

• Both simulated and measured 
data fit to a flat line

• Shows independence from 
detector efficiency as 
expected

• Simulation results relatively 
close to their measured 
counterparts

• Within 5.5%
• Weighted averages within 2%
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Conclusions

• 𝑺𝑺𝒎𝒎𝟐𝟐 minimizes detector response
• Mostly depends on the nuclear material and any reflecting components

• Parameter should allow for much more direct comparison between 
simulations and experiments involving nuclear material
• 𝑆𝑆𝑚𝑚2 indicates accuracy of model, not accuracy of detector positions or 

other detector parameters
• Models of experiment can be less detailed due to omission or 

simplification of detector
• Only need a way to produce the count rate moments
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Limitations and Assumptions

• Hage-Cifarelli formalism uses some assumptions
• Insignificant detector dead time, induced fissions occur at the same time 

as emission of their inducing neutron, point sources, etc.
• Equations shown for count rates, 𝑺𝑺𝒎𝒎𝟐𝟐, assume (𝜶𝜶,𝒏𝒏) emission 

negligible
• Shouldn’t affect outcome, just the equations

• Any reflectors used in detectors may have an effect (however small) on 
𝑆𝑆𝑚𝑚2 value
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Future Work

• Re-derive 𝑺𝑺𝒎𝒎𝟐𝟐 equation using original Hage-Cifarelli expressions that 
include (𝜶𝜶,𝒏𝒏) emission

• Push detector independence to the limit
• Test other types of detectors, run simulations with no detectors

• Have tested detector-less models with MCNP, working on PARTISN simulations

• Explore relationship between reflecting materials and 𝑺𝑺𝒎𝒎𝟐𝟐
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Thanks!
Contact: mcspaden@lanl.gov
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Verifying Uncertainty Formula

• Simulated large numbers of 
“experiments” by creating 
random count rate data

• Assumed Gaussian distribution 
for count rates

• Computed and 𝑆𝑆𝑚𝑚2 value for 
each set of random rates

• Two tests for computed standard 
deviation:

• Chebyshev Inequality
• Minimum percentage of values must 

be within 𝑥𝑥 standard deviations of the 
mean

• 75% within two 𝜎𝜎
• 50% within 2 𝜎𝜎

• Computed 𝜎𝜎 = 𝐸𝐸 𝑥𝑥2 + 𝐸𝐸 𝑥𝑥 2

for the set of 𝑆𝑆𝑚𝑚2 values, 
compared to formula
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Verifying Uncertainty, cont.

• Three BeRP Ball Cases:
• NoMAD 30cm away

• High 𝑅𝑅1,𝑅𝑅2
• NoMAD 77.5 cm away

• Low 𝑅𝑅1,𝑅𝑅2
• “Barebones” simulation model

• Just tracking particles leaving ball
• Very High 𝑅𝑅1,𝑅𝑅2

• One Cf-252 Measurement
• NoMAD 80.2 cm away

• Low 𝑅𝑅1, Lower 𝑅𝑅2
• 50 million trials

Case 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐
BeRP 30 cm 1.687 × 104 5.726 × 103

BeRP 77.5
cm

4.458 × 103 4.030 × 102

“Barebones” 
Simulation

8.438 × 105 1.419 × 107

Cf-252 
80.2 cm

1.564 × 103 1.188 × 101
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Verifying Uncertainty, cont.

• All cases have great agreement 
between theoretical and 
experimental 𝝈𝝈𝑺𝑺𝒎𝒎𝟐𝟐

• <<1% difference
• Chebyshev inequality also 

passed with flying colors
• ~95% within two 𝜎𝜎

• Follows usual behavior of normal 
distributions

• >84% within 2 𝜎𝜎

Case Difference in 𝝈𝝈𝑺𝑺𝒎𝒎𝟐𝟐

BeRP 30 cm -0.02%

BeRP 77.5 cm 0.005%

“Barebones” Simulation 0.007%

Cf-252 80.2 cm 0.02%
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Computing Leakage Multiplication

• Given an Sm2 value, it is 
possible to solve for ML if 
spontaneous fission rate and 
multiplicity distribution is 
known

𝑴𝑴𝑳𝑳 = 𝟏𝟏 +
𝝂𝝂𝑰𝑰𝑰𝑰 − 𝟏𝟏 𝑺𝑺𝒎𝒎𝟐𝟐𝝂𝝂𝑺𝑺𝑺𝑺𝟐𝟐𝑭𝑭𝑺𝑺 − 𝝂𝝂𝑺𝑺𝑺𝑺

𝝂𝝂𝑺𝑺𝑺𝑺𝝂𝝂𝑰𝑰𝑰𝑰

• Used simulation Fs for both 
measured and simulated data

• Average of cases gives 3.646 for 
measurements, 3.671 for 
simulations

• 0.69% difference
• Using Momentum, averages for 

leakage multiplication become 
3.438 for measured, 3.463 for 
simulated

• 0.74% difference
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