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Introduction

 Neutron multiplicity measurements usually are accompanied by
simulations

« Comparisons inform on the accuracy of the simulation model
 Both experiments and simulation have sources of error and uncertainty

» Positions of detectors and other objects
» Affects efficiency, and therefore count rates

» Detector response can be complex to depict appropriately

« A parameter that minimizes reliance on detector response would allow
for more direct comparison between a measurement of a source and its

respective simulation

12/16/2017 | 4



Los Alamos National Laboratory

Introduction (cont.)

 Manipulation of Hage-Cifarelli formalism [1] creates a detector
independent parameter

 Lower fidelity simulations performed at Los Alamos National
Laboratory have previously shown that such a parameter (termed Sm,)
does behave independent of detector efficiency [2]

* Need for testing with experimental data and more detailed simulations
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Theory
« From Hage-Cifarelli formalism:  Sm, therefore does not depend
e R, = eM; v {F, on detector response
e R, = e2M? (V_Sz n ﬂ—lvmvlz) E, e Should pe indgpendent of
vii—1 _ factors like solid angle, and
« Both depend on the properties therefore detector separation
of the nuclear material and distance
detector response
R, Vsz2T y—L—:ivstz F;, = Spontaneous fission rate
Smy = —5 = L Vs/m = nth reduced moment of
R1 Vs1 F:s

induced/spontaneous fission neutron
multiplicity distribution
3 = Total efficiency
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Theory (cont.)

« From standard error e Other possible ratios (e.g. .
propagation R3/R,R, and R3/R3)
OR, ? OR, ’ * Inclusion of triples rate leads to
Osm, = oMy |4 R, t R, worse statistics, more

S . complicated math
» Uncertainty in ratio dependent

on uncertainties in count rates
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Method — Measured Data

 Five-minute measurements
performed with 4.5 kg sphere
of a-phase plutonium [3-6]
o “BeRP ball”
¢ ~6% 240Pu

e Detector was the LANL
NoMAD

e Series of 3He tubes in high-
density polyethylene matrix

e Ten cases measured between
30-77.5 cm
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Method — Measured Data (cont.)

1E04

Poisson

I Dt NoMAD outputs list of
Interactions

1E03 -

e Which tube interaction
happened in and at what time

1E02 -

Frequency

Processed with Momentum [7]
1E07 -

e Implements random time
binning [8] to create Feynman
histograms

Calculates Rossi-a distribution
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Method — Measured Data (cont.)

1600 e Momentum uses histogram
400 moments to produce count
Pl rates
1200 /
* R{,R
1000 1o
/ e Uncertainties based on
- 300 - .
g , covariance matrix
ILI « Additionally, computes
400 parameters such as
200 multiplication and Feynman-Y
o]
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Gatewidth (ps)
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Method — Simulated Data

 Simulations performed with
MCNP® version 6.1.1 [9],
ENDF/B-VII.1 cross sections

Replicates the five-minute
measurement

MCNP Ptrac file manipulated
with mcnptools to mimic
NoMAD output

e Accounts for dead time
e Processed in the same
Graphic made with MCNP Visual Editor [10] fashion
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Results — Singles Rates

 If looking at the singles rate,
no consistent trend

| « Some simulations
overestimate by as much as
4%

°~ | Some underestimate by
s | almost 2%

500+ : - .

4. 00E+03 I B

Detector-Source Separation Distance (cm)
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Results — Doubles Rates

e This continues with the
doubles rate R2
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Results — Sm,

More consistent trend

2.2E-05
- * Most simulations overestimate
o % ........ § ......... % ......... % ......... i ........ ? ........ % ........ % ........ % .............. % | |
% Can use the overestimations to
o make more informed changes to
” Laeos model
178.05 o Measured  From Smz2 equation,
e Sl et overestimation cogld _be due to
......... e Average low spontaneous fission rate or
e . " . o . . high multiplication

Detector-Source Separation Distance (cm)

12/16/2017 | 14



Results — Sm, (cont.)

 Both simulated and measured
data fit to a flat line
o % ........ § ......... % ......... % ......... i ........ ? ........ % ........ % ........ % .............. % e Shows independence from
% detector efficiency as
g expected
SR © Simulation results relatively
X Simulated close to their measured
wseos L S e counterparts
: N Detect:riSource Sepzsration Dist:rjce (cm) " N o W|th|n 55%

« Weighted averages within 2%
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Conclusions

« Sm, minimizes detector response
» Mostly depends on the nuclear material and any reflecting components

« Parameter should allow for much more direct comparison between
simulations and experiments involving nuclear material

* Sm, indicates accuracy of model, not accuracy of detector positions or
other detector parameters

 Models of experiment can be less detailed due to omission or
simplification of detector

* Only need a way to produce the count rate moments
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Limitations and Assumptions

« Hage-Cifarelli formalism uses some assumptions

* Insignificant detector dead time, induced fissions occur at the same time
as emission of their inducing neutron, point sources, etc.

 Equations shown for count rates, Sm,, assume (a,n) emission
negligible

« Shouldn’t affect outcome, just the equations

* Any reflectors used in detectors may have an effect (however small) on
Sm, value
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Future Work

 Re-derive Sm, equation using original Hage-Cifarelli expressions that
include (a,n) emission

 Push detector independence to the limit

» Test other types of detectors, run simulations with no detectors
* Have tested detector-less models with MCNP, working on PARTISN simulations

 Explore relationship between reflecting materials and Sm,
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Thanks!
Contact: mcspaden@lanl.gov
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Verifying Uncertainty Formula

 Simulated large numbers of  Two tests for computed standard
“experiments” by creating deviation:
random count rate data :
_ R e Chebyshev Inequality
 Assumed Gaussian distribution . Minimum percentage of values must
for count rates be within x standard deviations of the

mean
e 75% within two o

e 50% within V2 ¢
« Computed o = /E[x2] + E[x]?

for the set of Sm, values,
compared to formula

o Computed and Sm, value for
each set of random rates
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Verifying Uncertainty, cont.

. '\'OH'\QJ’:'; iocm away BeRP30cm 1.687 x 10*  5.726 x 103
| 1, Ity
« NOMAD 77.5 cm away BeRP 77.5 4458 x 103  4.030 x 1072
Low Ry, R, cm

» "Barebones” simulation model “Barebones” 8438 x 105  1.419 x 107
e Just tracking particles leaving ball S; lation
* Very High R, R, Imu

e One Cf-252 Measurement Cf-252 1.564 x 103 1.188 x 10!
« NOMAD 80.2 cm away 80.2 cm

Low R4, Lower R,

e 50 million trials
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Verifying Uncertainty, cont.

Case Difference in o,
. All cases have great agreement ~ BeRP 30 cm -0.02%
between theoretical and BeRP 77.5 cm 0.005%

experimental oy,

e <<19% difference

« Chebyshev inequality also Cf-252 80.2 cm 0.02%
passed with flying colors

“Barebones” Simulation 0.007%

Frequency of Sm; Values Relative to Mean

° ~95% W|th|n two o 2500000 1
Follows usual behavior of normal
distributions 2000000 -

e >84% within V2 o

~ 1500000
1000000 A

500000 A

o

-2 -1 0 1 2
Standard Deviations From Mean
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Computing Leakage Multiplication

 Given an Sm, value, it is » Average of cases gives 3.646 for
possible to solve for M if measurements, 3.671 for
spontaneous fission rate and simulations
multiplicity distribution is

* 0.69% difference
* Using Momentum, averages for
leakage multiplication become
Vsi¥rz 3.438 for measured, 3.463 for
simulated

e 0.74% difference

known

m, = 1 4 T DEmaVsi"Fs — V)

e Used simulation F, for both
measured and simulated data
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