Design of a HEU Metal Fast Burst Supercritical Assembly

Team Lead: Victoria Hagopian Chuck Floyd, Kevin Horlback, Stephen Langellotti, R. Eric Morin, T. Adam Wilson

> Dr. John Mattingly North Carolina State University Jonathan Coburn North Carolina State University Jesson Hutchinson Los Alamos National Laboratory

Project Description

Design of a highly enriched uranium (93.5% U-235) metal fast burst supercritical assembly

Applications

- Estimating the reactivity worth of different materials
- Studying neutron-induced damage in various materials
- Conducting forensic analysis of neutron-irradiated nuclear materials
- Testing different types of dosimetry

Project Objective

Surpass the performance of Godiva-IV

Technical Objectives:

- Maintain/improve level of power output (~90,000 MW)
- Minimize pulse duration (\leq 30 µs) while maximizing neutron fluence

Engineering Objective:

- Maximize sample chamber dimensions
 - Design sample chamber to allow for pneumatic rabbit system for rapid, automated retrieval of irradiated materials

Historical Designs of Fast Burst Assemblies

Device	Positive	Negative
Godiva I	 Sphere geometry which allows for less U metal 	 Spherical shape requires complicated uranium metal machining Sphere shape ultimately makes it more difficult to control.
SPR III	 Much larger than the Godiva's sample chamber. Elimination of control rods makes the creation of the plates simpler. 	 Will have a much longer neutron lifetime. More mass will be required to achieve criticality
Caliban	Very large test chamber,Simple design of uranium plates.	Extremely large size increases the FWHM of neutron burst
Godiva IV	• Simple to model, create, and control.	 More mass will be required to achieve criticality than Godiva I.

Assembly Design

Component	Radius (cm)	Height (cm)	
Aspect Ratio (H/D)	0.75		Fuel Rings (5)
Mass	74.3 kg		
Core Dimensions	9.60	14.40	Sample Chamber
Fuel Ring	9.60	2.88	Control Pod
Control Rods	1.50	8.64	
Burst Rod	1.50	5.70	Safety Block
Safety Block	4.60	8.64	
Sample Chamber	2.00	14.40	

Operating Principle

Simulation Algorithm

Reactivity vs. Density vs. Temperature

MCNP simulations provided our neutronic parameters

All reactivity effects are assumed to be due to thermal expansion of the fuel only

 $-\Delta V = 3\alpha V_0 \Delta T$

-
$$\rho(T) \approx \rho_0 + \alpha_T \Delta T$$

• $\alpha_T = -2.14 \frac{pcm}{\circ_C}$

Reactivity Effect Due to Distributed Density

Dynamic Neutronic Behavior

					2.5 ^{1e1}	9 Average Neutron Flux	
ρ	FWHM µs	Peak $m{\phi} imes 10^{-19} \ { m cm}^{-2}{ m s}^{-1}$	$\begin{array}{c} \text{Sample} \\ \Phi \times 10^{-14} \\ \text{cm}^{-2} \end{array}$	Average $\Phi imes 10^{-14}$ cm ⁻²	2.0		\$1.05 \$1.07 \$1.10 \$1.12 \$1.14
\$1.05	44.2	0.61	9.72	3.06	δ - Ε 1.5		
\$1.07	36.9	0.90	11.8	3.70	Flux (c		
\$1.10	29.3	1.40	14.7	4.63	u 1.0		
\$1.12	25.3	1.82	16.8	5.27	Ž 0.5		
\$1.14	22.5	2.31	18.8	5.90			
					0.0		

Time (μ sec)

Temperature Response

Temperature is solved for using two approaches:

- Analytic solution of Fourier's Law, feeds into simulator
- Numerical simulation in ANSYS, not spatially dependent

ρ	Peak Power GW	Peak <i>T</i> °C	Peak T _{ave} °C
\$1.05	37.3	206	78.3
\$1.07	55.3	245	90.8
\$1.10	86.1	301	108
\$1.12	112	340	121
\$1.14	143	378	133

*Initial temperature: 20 °C

**Melt temperature: 1135 °C

ANSYS Temperature Map

Evaluation of HEU vs LEU

HEU:

- Fluence: $4.63 \times 10^{14} \ cm^{-2}$
- Peak Power: 86.1 GW
- Peak Flux: $1.40 \times 10^{19} cm^{-2} s^{-1}$
- FWHM: 29.3 μs

LEU:

- Fluence: $6.20 \times 10^{15} \ cm^{-2}$
- Peak Power: 3,041 GW
- Peak Flux: $3.70 \times 10^{19} cm^{-2} s^{-1}$
- FWHM: 147.6 μs

HEU vs LEU Peak Temperature

Design Optimization

Design Optimization - Cont.

Based on these relationships we decided on:

- Mass: 74.3 kg
- Neutron Generation Time: 6.88 ns
- Aspect ratio (H/D): 0.75
- W% Moly: 1.5
- Sample Chamber Radius: 2 cm

Preinitiation Probability

$$p(n \ge 1) = 1 - \exp\left(-RT\left(\frac{k_i + k_f}{2} - 1\right)\right)$$
$$k_i = 1/(1 - 0.1\beta)$$
$$k_f = 1/(1 - 1.1\beta)$$

Where:

- $p(n \ge 1)$: probability of one or more interactions that begins a chain reaction
- R: neutron injection rate, 60 neutrons per second from U-238 SF
- *T*: insertion time of burst rod, 70 milliseconds
- k_i : initial reactivity, \$0.10
- k_f : final reactivity, \$1.10

The preinitiation probability of our assembly is about **1.5%**

Goals

Exceed Godiva-IV Performance

- Peak power greater than 90,000 MW
- FWHM less than 30 μ s
- Safety Analysis
 - Examine off-nominal operations
 - Stuck burst/control rod or safety block

Stretch Goals

- Look into other uranium alloys

Completed Work

Developed Numeric Model

- Developed the tools necessary to simulate this device

Improved Performance from Godiva-IV

- Peak power is over 100,000 MW (for \$1.12 and \$1.14 bursts)
- FWHM is less than 30 μ s (for \$1.10, \$1.12, and \$1.14 bursts)

Expanded Sample Chamber from Godiva-IV

– 2 cm radius vs 0.3175 cm in Godiva-IV

Safety Analysis

- Thought experiment as to the potential outcome of a stuck component

Future Work

Add contamination containment system

- Research potential alloys for surface application
- Look into other uranium alloys
 - Uranium-Niobium (UNb)
- Continue improving ANSYS models and simulations
 - Evaluate force distribution on the safety block
 - Confirm safety block dislodging after completion of pulse
 - Improve temperature transient simulation

Acknowledgements

Los Alamos National Laboratory Joetta Goda Jesson Hutchinson Robert Kimpland **Robert Margevicius** North Carolina State University **Elisabeth Brown** Joseph Cambareri Nilesh Kumar

References

- [1] INTERNATIONAL ATOMIC ENERGY AGENCY, Technical Guidance Reference Manual: Nuclear Forensic Support, IAEA Nuclear Security Series No. 2, IAEA, Vienna (2006).
- [2] R.D. MOSTELLAR, GODIVA-IV Delayed-Critical Experiments and Description of an Associated Prompt-Burst Experiment, Los Alamos National Laboratory, HEU-MET-FAST-086, (2012).
- [3] N. AUTHIER, B. RICHARD, & P. HUMBERT, Initiation of Persistent Fission Chains in the Fast Burst Reactor Caliban, Atomic Energy Commission.
- [4] T.R. SCHMIDT & B.F. ESTES, Recent Operational History of the New Sandia Pulsed Reactor III, Sandia National Laboratories.
- [5] J.RIVERS & O BUKHERIN, Material Attractiveness and Categorization Activities at the Nuclear Regulatory Commission, NRS Office of Nuclear Security and Incident Response, (2014).
- [6] W.L. MYERS, The simulation of a criticality accident excursion occurring in a simple fast metal system using the coupled neutronic-hydrodynamic method, Los Alamos National Laboratories, LA-UR--96-3886, United States (1996).

References

- [7] H.P. LOH, J. LYONS, & C.W. WHITE III, Process Equipment Cost Estimation, Final Report, National Energy Technology Laboratories, DOE/NETL-2002/1169, United States (2002).
- [8] J.M. BUSTAMANTE, D.A. COSTA, ET. AL., Disposition of Fuel Elements from the Aberdeen and Sandia Pulse Reactor (SPR-II) Assemblies, Los Alamos National Laboratories, LA-UR-10-03828, (2010).
- [9] LOS ALAMOS NATIONAL LABORATORY, Budget, Los Alamos National Laboratories, (2016).
- [10] C. SANFORD, NCSU Precision Instrument Machine Shop, 3/24/2017, Personal Interview.

Hypothesis Regarding Off Nominal Operation

- Pulse occurs
- Safety block fails to fall out of the assembly
- Device cools
 - On the order of minutes
- Reactivity increases
 - Reaches prompt supercritical
- Assembly pulses with lower amplitude

