ORNL Neutron Cross Section Measurements in the Resolved Resonance Range for the US Nuclear Criticality Safety Program

Klaus Guber

Oak Ridge National Laboratory Oak Ridge, Tennessee, USA

ational Laboratory

ORNL is managed by UT-Battelle for the US Department of Energy

Resonance region nuclear data work for NCSP

- Objective: Provide measured, evaluated resonance-region cross section data to address priority nuclear data needs for NCSP
- Vision: Address multiple nuclear data 5- and 10-year goals identified in the NCSP vision
- Final product: Rigorous ENDF/B resonance evaluations produced from cross section measurements (new/old) and analyses
- Last year's measurement work effort focused on vanadium and zirconium, which were differential nuclear data needs identified by NCSP Nuclear Data Advisory Group (NDAG)

Priority Needs */ Additional Needs								Cr, ²³⁷ Np,			
Co	ompleted Evaluation	s (FY)	Pb, Mn, 11, "Pu," Pu, Th, Be, "V, Zr, F, K, Ca, Mo, Na, La Minor Actinides (13), SiO ₂ (12), ⁵⁵ Mn (12), ^{180,128,183,184,186} W (14)								
	Materials	Pre FY2015	FY2015	FY2016	FY2017	FY2018	FY2019	FY2020	FY2021	Post- FY2021	
	Calcium (Ca)										
	Cerium (Ce)	- S- 8/2									
	Copper (Cu)										
nts	Iron (Fe)	TREE PR	a spilling and	Ner Alle							
ıзи	Lucite (C ₅ O ₂ H ₈)										
ure.	Tantalum (Ta)										
1510	Strontium (Sr)										
Me	Tungsten (W)										
,	Vanadium (V)										
	Zirconium (Zr)		1000	and and an and a start	Carrier Press						
	Polyethylene (CH ₂)	H ₂ O / CH ₂		2				-			
	Materials	Pre FY2015	FY2015	FY2016	FY2017	FY2018	FY2019	FY2020	FY2021	Post- FY2021	
<i>^</i>	Calcium (Ca)		Par Carlo								
	Cerium (Ce)										
	Cobalt (Co)										
	Copper (Cu)										
	Dysprosium (Dy)			1							
	Gadolinium (Gd)										
	Iron (Fe)	Carlo La									
SU	Lead (Pb)										
tio	Nickel (Ni)										
lua	Oxygen (O)										
va	Rhodium (Rh)										
e E	Plutonium-239										
let	Tantalum (Ta)										
łm	Strontium (Sr)				-					×	
S	Tungsten (W)										
	Uranium-235										
	Uranium-238										
	Vanadium (V)		miles 1	1234		1					
	Zirconium (Zr)										
	Hydrofluoric Acid										
	Lucite (C5O2H8)										
	Polyethylene (CH ₂)										
	ORNL			RPI		LANL		LLNL/NCSU			
 Requests for additional IE measurements: Ni, Mo, Cr (Fe-Cr alloys), Mn in intermediate energy range (VNIITF, NCERC). Request for measurements and evaluation of angular distributions at high energy for Cu. Continuing need for thermal extractance data. 								2			

NCSP Five-Year Plan

^{*}Note: work has been completed for some priority needs (e.g., ⁵⁵Mn, Ti, and Cr), and these isotopes/nuclides are maintained on the list for reference. Furthermore, the table represents the list of materials that can be addressed during the next five years under the current budget target. The additional priority needs will be addressed beyond the next five years.

Pulse width	: 1ns
Frequency	: 40–800 Hz
Average current	: 4.7–75 μA
Neutron intensity	:1.6 10 ¹² –2.5 10 ¹³ n/s

- Time-of-flight facility
- Pulsed white neutron source (10 meV < E_n < 20 MeV)
- Multi-user facility with 10 flight paths (10–400 m)
- The measurement stations have special equipment to perform the following:
 - Total cross section measurements
 - Partial cross section measurements
 Mational Laboratory

Neutron production

U-Target

Be-Can with H₂O

Neutron capture and total cross section experiments at a white neutron source

- Time-of-flight technique used to determine incident neutron energy; "clocks" used have typically 1nsec resolution
- Pulsed electron beam of accelerator starts the clock; γ-ray or neutron detector stops the clock
 - $v_n = L/t$

$$- E_n = m_n v^2/2$$

 Filters reduce frame-overlap background from low-energy neutrons, reduce γ-flash effects, and determine background

Capture cross section measurements at GELINA

Total energy detection principle

- C₆D₆ liquid scintillators
 - 125°
 - Pulse height weighting technique (PHWT)
 - Weighting function (WF) from Monte Carlo simulations
- Flux measurements (IC)
 - ¹⁰B(n,α)
 - ²³⁵U(n,f)

$$Y_{exp} = N \sigma_{\phi} \, \frac{C_w - B_w}{C_{\phi} - B_{\phi}}$$

Total cross section/transmission measurements

Sample and background filters

Detector stations Moderated: L= 30 m,50 m,(100 m,200 m) Fast: L= 400 m **Detector**

Low energy : ${}^{6}Li(n,t)\alpha$ Li-glass

High energy : H(n,n)H Plastic scintillator

Why are total cross section (transmission) data measured?

- The data are indispensable for obtaining the most accurate (n,γ) reaction rates
 - The transmission data allows to see resonances that are not very visible in (*n*,γ) data and vise versa
 - Since experiments are not performed with infinite small samples, corrections for self-shielding and multiple scattering are needed
- Lack of good total cross section data can lead to serious errors in these corrections and hence in the (n,γ) cross sections
- More complete resonance parameter data set will help improve nuclear statistical model calculations

Example: ¹¹⁶Sn use of incorrect neutron widths led to incorrect lowenergy (n,γ) cross sections (Wisshak et al., PRC 54, 2732, 1996)

Experiment for Cerium 142 I

- An isotopic enriched sample of 142-CeO₂ is needed (~30 g) from ORNL isotopes
- The sample is too expensive for purchasing (\$22/mg); lease from ORNL isotopes is an alternative
- However, new DOE lease policy requires NO RAD ADDED, i.e. <0.6Bq/g
- The ORNL isotopes procedure is as follows:
 - For the activity check, a baseline is established with 30mg of material before the experiments
 - After returning the sample, 30mg from the sample are used to check for activation
 - The material (60mg) used must be purchased due to destructive measurements technique
 - The measurement is to check for α -, β and γ activity
- If radiation is detected, the material must be purchased
- ORNL's ND group approach is to test and simulate the irradiation

Experiments for Cerium 142 II

- 60mg of Cerium 142 were purchased from ORNL Isotopes
- A baseline of 30mg was established before irradiation
- The irradiation of 30mg at RPI at a 10m flight path with a flux 7E5 n/sec/cm² was performed for about one hour
- The total number of neutrons was similar to that found in an experiment at GELINA
- The irradiated sample was shipped back for analysis

Oak Ridge National Laboratory Chemical Sciences Division Radioactive Materials Analysis Laboratory Customer Name: Hickman, E. C. Project ID: Charge Number: 3687ANCH Specimen Type: Date Received: 3/1/2016 9:30:00			y oratory	- -	Results of RMA	Analyses for: AL16110 Forved By 07/2016	
Lab Sample ID Analys	Customer	Sample ID Result	Date/Tim	e Sampled Uncertainty	Filtered? Units	Matrix Procedure No.	
RMAL16110-001		177590	3/1/2016	7:00:00	Unfiltered		
Sample is NO-RAD	y SBMS protocol with	LD-Alpha = 2.5E-01 Bq	mL, LD-Beta	= 5.0E-01 Bq/mL, Z-	Alpha = 0.4107,		
G-Alp/Bet	G-Alpha	2.7E-01	+/-	1.1E-01	Bq/mL	CSD-EPA-900.0	
	G-Beta	1.1E-01	+/-	1.4E-01	Bq/mL		
G-Scan	G-Beta K-40	1.1E-01 3.2E+01	+/- +/-	1.4E-01 2.0E+01	Bq/mL Bq/g	CSD-EPA-901.1	
G-Scan RMAL16110-002	G-Beta K-40	1.1E-01 3.2E+01 77590-R	+/- +/- 3/1/2016	1.4E-01 2.0E+01 7:00:00	Bq/mL Bq/g Unfiltered	CSD-EPA-901.1	
G-Scan RMAL16110-002 Sample is NO-RAD 1 Z-Beta = -2.268.	G-Beta K-40 I' vy SBMS protocol with	1.1E-01 3.2E+01 77590-R LD-Alpha = 2.5E-01 Bq/	+/- +/- 3/1/2016 'mL, LD-Beta	1.4E-01 2.0E+01 7:00:00 = 5.0E-01 Bq/mL, Z-	Bq/mL Bq/g Unfiltered Alpha = -1.905,	CSD-EPA-901.1	No rad addod
G-Scan RMAL16110-002 Sample is NO-RAD Z-Beta = -2.268, G-Alp/Bet	G-Beta K-40 If by SBMS protocol with G-Alpha	1.1E-01 3.2E+01 77590-R LD-Alpha = 2.5E-01 Bq/ 1.6E-01	+/- +/- 3/1/2016 'mL, LD-Beta +/-	1.4E-01 2.0E+01 7:00:00 = 5.0E-01 Bq/mL, Z- 9.0E-02	Bq/mL Bq/g Unfiltered Alpha = -1.905, Bq/mL	CSD-EPA-901.1 CSD-EPA-900.0	No rad added
G-Scan RMAL16110-002 Sample is NO-RAD Z-Beta = -2.268, G-Alp/Bet	G-Beta K-40 IV SBMS protocol with G-Alpha G-Beta	1.1E-01 3.2E+01 77590-R LD-Alpha = 2.5E-01 Bq/ 1.6E-01 3.2E-01	+/- +/- 3/1/2016 'mL, LD-Beta +/- +/-	1.4E-01 2.0E+01 7:00:00 = 5.0E-01 Bq/mL, Z- 9.0E-02 1.6E-01	Bq/mL Bq/g Unfiltered Alpha = -1.905, Bq/mL Bq/mL	CSD-EPA-901.1 CSD-EPA-900.0	No rad added

End of data for Request Number : RMAL16110

Experiments for Cerium 142 III

- A SCALE calculation was performed with the neutron flux profile from GELINA at the 60m flight station
- SCALE calculates all interactions and reactions of the neutron with the sample; output is the corresponding activity
- Irradiation time is 15 days for a typical experiment

Experiments for Cerium 142 IV

- An ORIGEN calculation was performed with the neutron flux profile from GELINA at the 60m flight station
- ORIGEN calculates all possible reactions of the neutron with the sample and subsequent decay with time
- Irradiation time is 15 days for a typical experiment

ORNL measurement activities for vanadium

- ⁵¹V has a natural abundance of 99.75% and is nonreactive in air
- Measurements were made using metallic samples of different thicknesses
- Transmission experiments with different samples are performed using FP4, 50m station
- Neutron capture at FP14 is 60m
- Experiments were performed with different background filter combinations
- Capture and transmission experiments were performed in 2015/2016 and need to be finalized

V (n, γ) raw data for thin sample

(n, γ) of 0.35mm vanadium sample

Transmission of 2mm vanadium sample

ORNL measurement activities for zirconium

- Zr has 5 stable isotopes; at least 4 major isotopes should be measured
- Good high resolution ORNL total cross section data for the separated isotopes are available, even for the long-lived radioactive fission product ⁹³Zr
- Data were retrieved from the Jack Harvey archive
- Therefore, only neutron capture experiments must be performed
- The new DOE lease policy might present a problem, especially regarding no-RAD-added with the ⁹³Zr half-life of 1.5 E6a

ORNL measurement activities for Zr

- The current ORNL approach is to start with natural Zr neutron capture and transmission using metallic samples of different thicknesses
- The combination of the natural sample capture data with the total cross section of the separated isotopes will help to obtain already parameters for the strong capture resonances
- A natural sample is always a good check for the performance of the resonance parameters obtained from the separated isotopes experiments

ORNL measurement activities for Zr (continued)

- Transmission experiments with different Zr samples are performed using the FP4, 50 m station
- Experiments are performed using different background filter combinations

National Laboratory

ORNL measurement activities for Zr (continued)

Neutron capture at FP14, 60 m

Old ORNL ⁹⁰Zr data

factor of 3 more than previous experiments

Old ORNL ⁹³Zr data

Total cross section of ⁹³ZrO₂ resolved resonances well above 100 keV

Status of NCSP experiments at EC-JRC Geel

	W	Cu	Са	Се	V	Zr
Sample	metallic disks 182,183,184,186	metallic disks 63 and 65	metallic disks nat Ca	metallic disks Nat Ce, Ce-142	metallic disks	Nat Zr metallic disks ^{90,91,92,94} Zr
	2009–2011	2011–2012	2013–2014	2014–2015	2015–2016	2016
Experiments GELINA	60m, 30m (n,γ) transmission	60m (n,γ)	60m (n,γ) transmission	Nat Ce 60m (n,γ) Nat Ce transmission ¹⁴² Ce sample problems	60m (n,γ) transmission	Nat Zr 60m (n,γ) + transmission started ^{90,91,92,94} Zr sample problems
Data sorting	finished 60m + transmission	finished 60m	finished 60m transmission	finished for thin and thick sample	finished for thin and thick sample	
Reduced to cross section	X-section, transmission	X-section	X-section transmission 0.6, 1.0, 5 cm samples	2mm X-section 2mm transmission 10mm transmission	thin X-section 0.35 and 2mm transmission	
Data testing	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	In progress	In progress	
Analysis and evaluation	Finalized and submitted to NNDC	Finalized and submitted to NNDC	Finalizing and submitted to NNDC	Started		

People involved in the experiments

- Peter Schillebeeckx, EC-JRC Geel
- Carlos Paradela, EC-JRC Geel
- Stefan Kopecky, EC-JRC Geel
- Peter Siegler, EC-JRC Geel
- Ruud Wynats, EC-JRC Geel
- Clint Ausmus, Ian Gauld, Cihangir Celik, ORNL
- Greg Leinweber, Yaron Danon, RPI

People involved in the evaluations

- Marco Pigni, ORNL
- Vlad Sobes, ORNL
- Luiz Leal, IRSN

Background determination in transmission using black resonance filters

Counts / ns