

Delivering science and technology to protect our nation and promote world stability

Neptunium Subcritical Observation (NeSO) Integral Benchmark Experiment Design

Theresa Cutler, Rian Bahran, and Jesson Hutchinson

Los Alamos National Laboratory

Winter 2017

Background and Motivation

Design/Conduct/Analyze Subcritical Validation Experiments

• Nuclear Data

- <u>Fill</u> integral experiment database deficiencies through new measurements
- <u>Find</u> differential nuclear data library deficiencies through new measurements covering different:
 - Energy Ranges (Thermal, Intermediate, Fast)
 - Multiplication Ranges (Low, Medium, High)
 - Materials (Fissile, Moderator, Reflector)
 - Neutron Reactions

o Transport Codes Validation

Uncertainty quantification methodology development

Recent Advances in Subcritical Experiments

- We have come a long way since the first subcritical measurements at CP-1 in 1942.
- Many organizations (LANL, LLNL, SNL, IAEA, IRSN, CEA, universities, and others) have pursued subcritical experiments and/or simulations in recent years.
- The BeRP ball reflected by nickel benchmark evaluation was published in the 2014 edition of the ICSBEP handbook.
- This benchmark was the first:
 - o Published benchmark evaluation of measurements performed at DAF.
 - Benchmark evaluation using new MCNP capabilities for subcritical systems (the MCNP list-mode patch and MCNP6 list-mode capabilities).
 - o Benchmark using the Feynman Variance-to-Mean method.
 - o LANL-led subcritical experiment in the ICSBEP handbook.
- This benchmark was the culmination of several years of subcritical experiment research.
- Additional benchmarks:
 - o BeRP-tungsten
 - o BeRP-copper

Validating Codes and Data with Subcritical Experiments

- Growing dataset of neutron multiplication benchmarks experiments/evaluations
 - o Culmination of several years of sub-critical experiment research
 - Goal is to validate nuclear data and computational methods
 Chronology: 2012 Present
- BeRP-Ni (published in 2014)
 - o Executed in 2012, ICSBEP evaluation published in 2014
- BeRP-W (published in 2016)
 - \circ Sub-critical tungsten-reflected α -phase Pu
 - Executed in 2012, ICSBEP evaluation published in 2016
- SCRαP (to be published in 2018?)
 - \circ Sub-critical copper/poly-reflected α -phase Pu
 - Executed in 2016, ICSBEP evaluation published in 2018
- Neptunium (to be published in 2020?)
 - Sub-critical Neptunium w/various reflectors, in design phase

Preliminary Design of the NeSO Integral Experiment

Neptunium Subcritical Observation (NeSO) Integral Experiment

- NeSO Preliminary Design (w/ MCNP[®]6)
 - o Neptunium Sphere
 - o High-purity nested metal shells
 - Varied thicknesses considered
 - Varied materials considered

Neptunium Subcritical Observation (NeSO) Integral Experiment

- Neptunium
 - 6.07 kg sphere, 98.8% ²³⁷Np
 - Manufactured at Los Alamos in 2001

 Cross-section
 - Cross-section variations based on data library
 - Np is a threshold fissioner so low-Z moderators were not considered

Previous Experiments with the Np Sphere

Critical Experiments

- o Documented in the ICSBEP
 - Np sphere reflected by HEU (SPEC-MET-FAST-008)
 - Np sphere reflected by HEU and Steel (SPEC-MET-FAST-014)
 - Np sphere reflected by HEU and Polyethylene (SPEC-MET-FAST-011)

Neptunium Subcritical Observation (NeSO) Integral Experiment

- NeSO Preliminary Design (w/ MCNP[®]6)
 - \circ Np Sphere
 - High-purity metal nested hemishells (0 4" thick)
- Reflector considerations:
 - Range of their k-eff
 - ²³⁷Np fission cross section sensitivity
 - Average neutron energy causing fission

Preliminary Keff Results with MCNP®6

- 0 [bare] to 4 in. thick reflector
- Planned measurement will likely go up to 4.0" thickness of total reflector:
 - Previous subcritical benchmark sensitivity
 - Beyond 4.0", assembly weight becomes more problematic for handling.
 - Cost prohibitive for high purity metals beyond 4" thick
- Ni shows greatest variability in keff over all thicknesses

Preliminary Sensitivity Results with MCNP®6

- 0 [bare] to 4 in. thick reflector
- Comparison to current ICSBEP benchmarks for ²³⁷Np
 - ²³⁷Np is the primary isotope of interest
 - According to DICE, only 4 critical configurations have ²³⁷Np
 - Max sensitivity for NeSO configurations is 0.82
 - 4x any currently existing ICSBEP benchmarks

11/01/2017 | 13

Preliminary Countrate Approximations with MCNP[®]6

- Np sphere measured with a LANL multiplicity detector [NPOD] in 2008
 - 135 cps @ 50 cm from center of Np sphere
- Leakage multiplication for various configurations approximated using MCNP k-eff
- Known efficiency for the NPOD (~1%)

Conclusions

- o Nickel reflected only
- NoMAD neutron multiplicity detectors, as was used in SCRaP experiment in 2016
- Analyze uncertainty associated with countrate predicted by isotopics compared to preliminary measurements

What's next?

• Final Design

- Continuous-energy nuclear data sensitivity analysis will be provided.
- Final design simulations will incorporate the detectors that will be used for the subcritical measurements.
- Determine measurement times for Np sphere and Cf-252 for each configuration using new approach which determines measurement uncertainties as a function of counting time

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

