

Delivering science and technology to protect our nation and promote world stability

Los Alamos National Laboratory

Using Fast Burst Assembly Designs to Demonstrate Safe Assembly of KRUSTY Core Components

William Myers, Richard Anderson, Mark Mitchell

Los Alamos National Laboratory, Advance Nuclear Technology Group (NEN-2)

October 2017

Overview

- o Background
- Description of the KRUSTY Experiment Design
- NCERC Material Handling/ Experiment Execution Process
- KRUSTY Fuel Component Description
- Lady Godiva Description
- Godiva II Description
- Moly-Godiva Description
- o Godiva IV Description
- o Parameters Important to the State of Criticality
- Use of Experimental Data to make a criticality safety case
- Conclusions/Recommendations
- Acknowledgements

NASA Kilopower Zero-Power Critical Experimental Concept

Experiment Execution at NCERC

ANS-8 Standards Govern:

- Storage of materials in vaults
- Transport of Materials to Experiment buildings
- Staging of Materials in Experiment buildings

Transition to critical experiment assembly operations

ANS-1 Standards Govern:

Critical experiment assembly operations
 Approach to Critical steps: half way rule, three quarter rule....

Disassembly Operations

Transition back to ANS-8 governed activities

Can you make the safety case for handling one component of KRUSTY Fuel without performing a validated simulation?

Enrichment (wt % U-235)	93.0
Metal Density (g/cc)	17.2
Moly Alloy (wt %)	8.0
Total Metal Mass (kg)	10.0
U-235 Mass (kg)	9.2
ID (cm)	4.0
OD (cm)	11.0
Height (cm)	8.3
H/D	0.8

Can you make the safety case for stacking two components of KRUSTY Fuel without performing a validated simulation?

Enrichment (wt % U-235)	93.0
Metal Density (g/cc)	17.2
Moly Alloy (wt %)	8.0
Total Metal Mass (kg)	20.0
U-235 Mass (kg)	18.4
ID (cm)	4.0
OD (cm)	11.0
Height (cm)	16.7
H/D	1.5

Can you make the safety case for stacking three components of KRUSTY Fuel without performing a validated simulation?

Enrichment (wt % U-235)	93.0
Metal Density (g/cc)	17.2
Moly Alloy (wt %)	8.0
Total Metal Mass (kg)	30.0
U-235 Mass (kg)	27.6
ID (cm)	4.0
OD (cm)	11.0
Height (cm)	25.0
H/D	2.3

Lady Godiva (Circa 1951)

52.8 kg of Bare Uranium
Un-alloyed Uranium Metal
93.7 wt % enriched in U-235
critical mass measurements
Neutron irradiation source (pulsed and steady-state)

Godiva II (Circa 1957)

57.7 kg of Nickel Clad Uranium Unalloyed Uranium Metal 93.5 wt.% enriched in U-235

Designed to be used as a neutron irradiation source (pulsed and steady-state)

Moly-Godiva (Circa 1963)

97 kg
U-Mo alloy (10 wt. % Mo) metal
U content 93 wt. % enriched in U-235
Aluminum Ion plated parts
Pulsed and steady-state operations
for various applications

Godiva IV (Circa 1967)

U-Mo alloy (1.5 wt. % Mo) metal
U content 93 wt. % enriched in U-235
Aluminum Ion plated parts
Pulsed and steady-state operations
for various applications

Parameters of Importance to Criticality

Anything that affects the global battle between absorption and leakage will affect $\mathbf{k}_{\text{eff.}}$

- Mass
- Competing materials (materials that absorb but do not fission)
 - poisons are a class of these.
- Moderation
- Shape (geometry)
- Size (volume)
- Density and/or concentration
- Nearby fissionable material (spacing, interaction)
- Enrichment
- Reflection

Note that the parameters are somewhat interdependent.

Changing one often changes others.

Now can you make the safety case for stacking three components of the KRUSTY Fuel without performing a validated simulation?

Assembly	U-Mo Alloy (Mo wt. %)	Critical Mass (kg)	3/4 critical mass estimate (kg)
Lady Godiva	0.0	52.7	39.5
Godiva II	0.0	57.7	43.3
Godiva II (H/D			
near 2.0)	0.0	68.5	51.4
Moly-Godiva	10.0	97	72.8
Godiva IV	1.5	65	48.8

Enrichment (wt % U-235)	93.0
Metal Density (g/cc)	17.2
Moly Alloy (wt %)	8.0
Total Metal Mass (kg)	30.0
U-235 Mass (kg)	27.6
ID (cm)	4.0
OD (cm)	11.0
Height (cm)	25.0
H/D	2.3

L.J. Koch and H.C. Paxton, "Fast Reactors," Annual Review of Nuclear Science, Vol. 9, pp. 437-472, (1959).

Conclusion/Recommendation

If you want to learn more about how to make a criticality safety case without having to perform a validated simulation, then come and sign up for one of the Department of Energy's Nuclear Criticality Safety Program's training and education classes.

For more information check the website:

https://ncsp.llnl.gov/training.php

ps. You will learn a bunch more about criticality safety related topics and get some "hands on" lessons too!

Acknowledgments

• This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Any Questions or Comments?

Extra Slides