Exceptional service in the national interest

Application of Nuclear Criticality Safety to Early Earth Age Uranium

Norm Schwers and John Miller ANS Winter Meeting

November 1, 2017

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

- This review discusses the natural criticality events which occurred in the Oklo/Gabon area and compares that to some currently known uranium deposits
 - Natural reactors were proposed in 1956: Oklo region reactors discovery in 1972
- Natural decay of uranium; U²³⁵ and U²³⁸ enrichment and quantity/mass
- Method for identification of the age of the deposit: decay to lead U²³⁸ -> Pb²⁰⁶ and U²³⁵ -> Pb²⁰⁷
 - U -> Pb decay chains are well defined and geologists determined the Earth to be 4.54 billion years old (Ba)
 - This review calculated various U mass values, and evaluates various criticality parameters going back to 4.54 Ba

Uranium deposits in nature

- Reports include 14 different rock and mineral formations of U deposits
 - Most are silica oxides and uranium oxides of various forms
- Known enrichment in all known U deposits is (0.72%) consistent across earth with one exception (Oklo region)
- Most reports of decay products (i.e., are very low) reportedly due to lead leaching
- Cosmic materials show significantly lower concentrations than Earth crust
- Mantle lava is lower than the quantities in the crust

Uranium Enrichment

 The effect of going back in time increases the mass as well as the enrichment

Inverted time from today

Time (yrs)	²³⁵ U	²³⁸ U	Ratio	U Total	Enrichment
0	1	137.9	137.9	138.9	0.720%
1.0E+06	1.00	138	137.79	138.92	0.721%
7.04E+08	2.00	154	76.91	155.81	1.284%
1.00E+09	2.68	161	60.16	163.71	1.635%
2.00E+09	7.17	188	26.24	195.22	3.671%
3.00E+09	19.2	220	11.45	238.79	8.033%
4.00E+09	51.3	256	4.99	307.80	16.682%
4.54E+09	87.4	279	3.19	366.24	23.860%

- $T_{1/2} U^{238} 4.468$ billion years (1X $T_{1/2} = 2$ times current content)
- T_{1/2} U²³⁵ 703.8 million years (6.4 X T_{1/2} = 84 times current content)
- ANSI/ANS 8.1 subcritical limit for Saturated solution U₃O₈ is 0.96% which corresponds to about 3.5E8 years

Lead – Primordial or Radiogenic

- Lead in nature:
 - 14 ppm in the Earths crust and uranium is 2.7 ppm (ratio U:Pb = 0.19)
 - Reports that propose the Earth's age list the U:Pb ratio as 7.5 to 8.2
 - Chart of Nuclides Pb²⁰⁴=1.4%, Pb²⁰⁶=24.1%, Pb²⁰⁷=22.1%, Pb²⁰⁸=52.4%
 - Inconsistencies of Earth's Pb ppm and the isotopic content in the crust.
- If all of the Pb²⁰⁶ and Pb²⁰⁷ are radiogenic, then the starting point would have had to be at an enrichment nearly 50% (nearly 6 Ba)

Lead – Primordial or Radiogenic

- Reportedly the U:Pb ratio adjacent to U deposits is low due to lead preferentially leached away from the uranium deposits.
 - Example of lead leaching preferentially into a system is from the Flint MI water project. Change water supply, changes pH and electrical potential, other chemicals affect any passivating layer
 - Plausible for an open system, however from a criticality safety standpoint, water for leaching would significantly boost reactivity.
- Assume some Pb²⁰⁶ and Pb²⁰⁷ is primordial AND if some lead leaches out of the system: creates significant errors in the estimates of the age of the earth

Oklo Reactors

- In Oklo reactors, different quantities of U are involved in each of the 16 natural reactors
 - Some Oklo deposits have been fully mined (some very near surface)
 - U concentration between 0.1% up to 10% (remainder being rock)
 - Enrichment at estimated time of Oklo is 3.7% (2 Ba)
- Reportedly operated at 100kW for 1 million years
 - Steady state reactor operation is hard without control mechanisms
 - Likely a moderator expansion and expulsion from the reactor system
 - Cycling at higher powers as water ingress is more likely. Heat and cracking could allow more paths for water into the rock
- Why did Oklo reach criticality and others didn't?
 - Mass and Concentration are not reported nearly as high as the MacArthur River uranium deposit

Canadian Mine: MacArthur River

- Evaluated because it is high grade ore; concentration is >17% and mass is 580,000 MT discovered in 1988 (after Oklo)
 - U tailings data shows Pb < 1%, but based on decay data, the lead could be approximately >60%.
 - Materials identified in tailings are primarily quartz, calcium sulphate, and illite (clay-like substance).
 - Compare 580,000 MT to ~125 tonnes U in a BWR
 - Compare high enrichments in early Earth to Oklo estimated to be 3.7%
 - Problem uncertainties
 - There is no consistent marker to prove when the uranium ore concentrations came together. This affects enrichment and mass.
 - Assumption: sandstone mixed into system

Criticality Safety factors

- Moderator anticipated to be low, but water would fill pores
 - If low, how did it leach out lead uniformly across all forms of uranium deposits – mines in Canada are 100-450 m deep
- Concentration uncontrolled, but may have varied.
 - Some mines in Canada >20% by mass
- Enrichment remarkably consistent across the globe.
 Reduced slowly over time.
- Mass tremendous mass in the hundreds of thousands of metric tons and would have been much more (2.6 times today's value)
- Geometry Varies from site to site
- Absorption would vary by materials in each mine
- Reflection rock, uranium, metals, sandstone, etc.

MCNP Calculation and Analysis

- Information provided here evaluated three mass levels for various past times (higher enrichment)
 - System as modeled is U₃O₈ missed with SiO₂
 - Water added into porosity region
- The K_{eff} eigenvalues are not real.
 - The values prompt critical (keff = 1.007) are unlikely given that the water likely seeps in slowly and gets expelled due to fission heat.
- The high eigenvalues at early earth age is inconsistent with a lack of natural criticality. Something prevented the natural criticality.
- Criticality is more likely for early age uranium due to higher enrichment, higher mass, and wider range of favorable moderation values.

MCNP Results

Flooded left and dry right

 There is an indeterminate amount of lead Pb²⁰⁶ and Pb²⁰⁷ that is primordial

Conclusions

- Some U and Pb leaching out of the system results in U:Pb ratios that are inaccurate for deposit age estimation
 - The lack of Pb in U deposits could be from reduced chronological time frame, or from natural causes (leaching from open system)
 - Leaching requires water and water increases uranium reactivity: making criticality more likely
- U mass and enrichment are significantly higher in earlier chronological time.
 - Natural criticality is easily achieved in high concentration ore
 - The lack of criticality is evidenced by the consistent uranium enrichment