

Enhancing the Criticality Safety Analysis for the Mobile Plutonium Facility

Tracy Stover, Stephen Kessler, John Dewes

Savannah River Nuclear Solutions, LLC ANS Annual Conference June 2018

About the Facility

- Developed by SRNS and SRNL for NNSA
- Rapidly deploy to a host country
- Receive, assay, stabilize and package plutonium from a foreign weapons program at a remote location
- Modularized into 20-foot ISO containers
- Part of NNSA Emerging Threats Program

About the Facility

- Flexible and adaptive extreme conditions
- Robust and flexible but simple criticality safety program required

Criticality Safety Analysis

- Hazards analysis team identified set of potential criticality event scenarios
- Examine facility and process for normal and credible abnormal conditions
 - Single unit handling
 - Storage array
 - Bounding piece of instrumentation
- Enhancements for flexibility
 - Radiation shielding
 - Non-metal receipts and limited liquid receipts
- Suite of administrative controls with simple mass and handling limits.

Process Description

- A container(s) to be received represents some inherent but acceptable risk.
- Container(s), handled one at a time
- Receive initial imaging and NDA
- If it conforms to the facility safety limits it is placed in storage
 - Otherwise it is isolated; isolated containers are dealt with on a caseby-case basis.
- Container is processed
 - Contents removed, stabilized for safe transport, repackaged, subjected to a final NDA characterization, and packaged for safe transport.

Process Description

- Process is controlled from a centralized control room
 - Material accountability
 - Security
 - Observation of operations

Normal Process Conditions

- Derived from the expected flow of materials through the facility
 - Individual containers sitting in air on soil or pavement
 - Full Lead Storage Array with one addition item in transit
 - Bounding piece of instrumentation with one item inside for analysis.

Normal Process Conditions

Hazards Identification

- Upsets in handling and processing
 - Inadvertent Interaction
 - Inadvertent moderation or reflection
- Not credible events due to nature of process
 - Beryllium reflection, melted shielding moderation, moderation in gloveboxes, errors in final packaging
- Natural phenomenon hazards
 - Not analyzed → accepted risk
 - Type, frequency, and severity cannot be known a priori
 - Relatively short duration of facility mission

Hazards Identification

- Remaining Upsets
 - Handling and processing
 - Evaluate by bounding mass, moderation, and reflection
- Credible abnormal conditions to analyze
 - Two containers in contact with each other (interaction)
 - Container over the mass limit
 - Container fully flooded
 - Array racks fallen together
 - Two containers in the bounding piece of instrumentation

Credible Abnormal Conditions

Beyond Credible Abnormal & Operational Flexibility

- Can-bag-can configurations
- Temporary storage of flooded container in Lead Storage array
- Inadvertent placing of flooded container into instrumentation
- Radiation shields for glovebox
 - polyethylene or W.E.P
- Radiation shields for storage array
 - Lead or polyethylene
- Subdivided pieces of metal in dry and flooded conditions
- Allow for small samples of plutonium bearing solutions
- Allow for non-metal receipts of plutonium
 - Oxide, oxalate, and fluoride

Operational Flexibility

Modeling & K-safe

- Internal validation of SCALE 6.1 for Pu metal systems
 - k-safe= 0.9697
- Fissile
 - 6.5 kg Pu-239 alpha phase metal
 - H/D=1 cylinder
- Containers
 - Material: stainless steel, aluminum
 - Geometry: thin walled slip lid can, thick walled Hanford convenience can

Modeling & K-safe

Lead Storage

- As-built with bounding separation distance between locations (minimum 63.5 cm)
- Two adjacent racks with 15 tube and 4 pot locations per rack

 Overly conservative stainless steel wall thickness of 6" (in reality less than 0.25")

Modeling & K-safe

- Bounding Instrumentation
 - Epithermal Neutron Multiplicity Counter
 - Bounding moderation and reflection
 - Simplified model
 - Polyethylene annulus
 - Inner and outer cadmium liners
 - Graphite and aluminum plugs
 - Limited vertical height of cavity

Non-Metal Receipts

Limited Volume Liquid Samples

- Allowance is made to permit aqueous solutions up to 3.0 L (approximately 2 Hanford cans) or up to 450 g FGE Pu-239, whichever is more limiting
 - solution container is handled individually
 - solution container is not placed in lead storage
 - solution container placed in any other mass control zone, that MCZ must be free of other fissile material
 - case-specific disposition path (e.g. drying or calcining) is
 executed BEFORE operations with solids resume in that MCZ

Design Features & Control Suite

- Criticality Accident Alarm System installed
 - In Solids module (i.e. near gloveboxes)
- Design Feature
 - Storage array position limiters in tube locations
- Mass control basis of 6.5 kg FGE Pu-239
 - metal and non-metal solids
- Facility divided into Mass Control Zones
 - Limit of one item at a time
 - Limit of 6.5 kg FGE Pu-239
 - Exceptions: storage, processing, final storage
- Only one container moved at a time between MCZs

Design Features & Control Suite

- Initial receipt
 - Not critical upon receipt and do not intend to do anything invasive to make it so
 - Have only sender's inventory/description until initial NDA completed
 - Considered a necessary risk for the missions
- Thin walled cans required to be placed inside more robust container
- Non-conforming containers isolated with 100 cm spacing and dealt with on a case-by-case basis

Future Work

- Removing delineation of thick and thin walled containers
 - Reflection has influence but not absorption
- Allowing variance in potential container materials
 - Zinc, tin, iron, copper
 - Steel, bronze, brass
- Allowance for temporary staging area outside of Receipt

Not All Bad Weather...

Conclusion – Highest Quality Feature of All

Team of 24-30 plutonium experts and highly skilled operators

