

Elimination of Acid Base Criticality Scenarios in the HM-Process

Tracy Stover, John Lint, W. Glynn Dyer

Savannah River Nuclear Solutions, LLC ANS Annual Conference June 2018

SRNS-STI-2018-00248

Introduction

- The HM-Process
 - Aqueous 2 cycle uranium extraction and purification using low volume percent TBP to extract uranium from nitric acid solution
 - Mixer-settlers are not geometrically safe
- Safety analysis postulates 36 criticality scenarios based on reflux leading to accumulation of fissile material
 - Due to upset in a process stream
 - Conservative assumptions made many years go with less sophisticated models
 - Assumption that reflux continuously builds up fissile material in 3 stages
 - Distribution goes to 0 or infinity not physically achievable

HM-Process

- 1st Uranium Cycle
 - Process that separates the uranium from the fuel matrix, fission products, and most of the transuranic actinide content
- 2nd Uranium Cycle
 - One 16-stage bank (D) and one 12-stage bank (E)
 - Purifies uranium and removes any remaining transuranic content

HM-Process

Parameter (all dimensions in inches)	16-Stage	12-Stage
	Bank	Bank
Settling section height x width x length	10x8x48	12x12x108
Mixing section height x width x length	8x8x9	10x12x13.5
False bottom height	2	2
Bottom, front, and back plate thickness	0.5	0.5
Top and side plate thickness	0.25	0.25

Savannah River NUCLEAR SOLUTIONS"

Postulated Events

- Conclusion of a two year process to <u>begin</u> removing incredible events
- D-Bank acid (1DS stream) becomes dilute in nitric acid
 - Drops below minimum acid limit
 - Uranium not extracted into organic phase and accumulates in aqueous phase of D-Bank
- D-Bank acid (1DS stream) becomes concentrated in nitric acid
 - Exceeds maximum acid limit
 - Acid carry over to E-Bank increases, acidity in E-Bank increases reducing the amount of purified uranium leaving the bank

Normal, Credible Abnormal, & K-safe

- Normal = Operational Setpoint
 - 1DS is set to 0.95 M nitric acid at 3.31 L/min flow
- Credible Abnormal = Operational Band Limits
 - 0.8 M to 1.5 M
 - Flowrate remains the same
 - Once exceeded process must be immediately corrected by operations or shut down
- Safe multiplication factor
 - K-safe = 0.9564

Validation

- SEPHIS and SEPHIS-P
 - 1970s era FORTRAN code maintained by SRS
 - 1998 Formally validated for HM-Process chemistry modeling
 - 2015 ported to PYTHON programming language and given basic GUI, identical methodology – no changes to results
- SCALE 6.1
 - Internal, bias determined for HEU aqueous processing systems

Need for Experimental Basis

- SEPHIS historically used for flowsheet development not safety analysis
- No simulation is perfect SEPHIS-P has some bias to it
 - Overprediction for HM-process tends to be toward aqueous uranium concentration
- Debated various ways to show SEPHIS-P was bounding the chemistry conditions
- Concluded needed experimental basis
- 1DS acid upset were modeled in process mock-up equipment by SRNL
- Confirmed SEPHIS-P was adequately modeling the process chemistry with a bias toward aqueous uranium

SEPHIS Calculations

- Based on the 73 wt.% uranium enrichment flowsheet
- 1DS Acid Molarity:
 - Normal: 0.95 M
 - Credible Abnormal: 0.8 M (low), 1.5 M (high)
 - Analyzed Range: 0.05 M to 3.5 M
- 1DS Flow: 3.31 L/min
- 1DF Properties:
 - 8.67 L/min
 - 5.5 M acid
 - 5.25 g U/L (4.52 g U-235/L)
- 1DX: 26.02 L/min solvent at 7.5 vol% TBP

SEPHIS Calculations

- Establish a SEPHIS model of the 2nd Uranium cycle
- Hold all process parameters other than 1DS acid molarity at normal value
 - No two concurrent, independent upsets
- Generate steady state (equilibrium conditions) at 1DS acid molarity values:
 - 0.05, 0.10, 0.30, 0.50, 0.65, <u>0.80</u>, <u>0.95</u>, 1.25, <u>1.50</u>, 1.75, 2.00,
 2.25, 2.75, 3.00, and 3.50 M

SEPHIS Calculations

- Assumptions
 - No plutonium, transuranics, or fission products modeled
 - Ferrous sulfamate reductant added to D-Bank stage 4
 - Utilized the setpoints and ranges from the 73 wt.% enriched uranium flowsheet
 - Settling sections are controlled to 50% by volume organic, and 50% aqueous

KENO Calculations

- Acquire stage-wise D and E Bank compositions
 - Aqueous and organic components
 - Mixing and settling sections
- Transform into SCALE compatible compositions
 - Organic: n-paraffin, TBP, uranyl nitrate, acid
 - Aqueous: acid, uranyl nitrate hexahydrate, water
 - Reduce to H, C, O, P, N, U-235, and U-238
 - Separate in settling, combined in mixing section → 3 compositions per stage

Model of Mixer Settler – Chemical Species

- 3 unique compositions per stage
- Each stream in each stage composed of H, C, O, P, N, U-235, U-238
 - 73 wt.% uranium enrichment
- Chemical species listed below:

	Name	Chemical Formula	Theoretical Density (g/cm ³)	
	Tributyl Phosphate (TBP)	C ₁₂ H ₂₇ O ₄ P	0.9727	
	Nitric Acid	HNO ₃	1.55	
nic	n-paraffin (assumed):			
gal	20% dodecane	$C_{12}H_{26}$	0.749	
Ö	40% tridecane	$C_{13}H_{28}$	0.756	
	40% tetradecane	$C_{14}H_{30}$	0.763	
	Uranyl nitrate	$UO_2(NO_3)_2$	2.203	
SL	Name	Chemical Formu	a Theoretical Density (g/cm ³)	
JO E	Water	H ₂ O	0.9982	
nb	Nitric Acid	HNO ₃	1.55	
Ă	Uranyl Nitrate (aqueous)	$UO_2(NO_3)_2 * 6(H_2O_3)_2$	0) 2.4183	

Savannah River NUCLEAR SOLUTIONS"

Methodology – SCALE Models

Aqueous Phase vs. Multiplication

1DS	Organic Volume	Aqueous Volume	Bank	k _{BE}
Acid Conc.	Fraction	Fraction		
0.05 M	67%	33%	D	0.754
0.05 M	50%	50%	D	0.901
0.05 M	33%	67%	D	1.020
0.05 M	50%, 2x height	50%, 2x height	D	1.160
0.10 M	67%	33%	D	0.717
0.10 M	50%	50%	D	0.859
0.10 M	33%	67%	D	0.979
0.10 M	50%, 2x height	50%, 2x height	D	1.112
3.00 M	67%	33%	E	0.213
3.00 M	50%	50%	E	0.285
3.00 M	33%	67%	E	0.329
3.00 M	50%, 2x height	50%, 2x height	E	0.379
3.50 M	67%	33%	E	0.223
3.50 M	50%	50%	E	0.305
3.50 M	33%	67%	E	0.354
3.50 M	50%, 2x height	50%, 2x height	E	0.408

Approval Process

- No user qualification exists for SEPHIS-P, expert based
- Author learned SEPHIS-P under guidance of expert user
- Analysis reviewed by facility personnel familiar with process chemistry
- Analysis reviewed by SRNL process chemists along with experimental work for 1DS upset
- Concurrence issued that the analysis was appropriate and SEPHIS-P was conservative for this application
- Facility and Criticality Safety management both satisfied with concurrence → accept analysis

Conclusions & Future Work

- Eliminates 2 of 36 postulated cycle criticality scenarios
- Sets basis for future analysis with SRNL support
- Allows facility to eventually downgrade the functional classification of certain equipment
 - Saves time, money, dose

Acknowledgements

- Funded by DOE-EM under operational budget for H-Canyon
- Thanks to SRNL chemists Tara Smith and Edward Kyser
- Dedicated to Mark Crowder

