The 2018 Edition of the ICSBEP Handbook

John D. Bess Margaret A. Marshall Idaho National Laboratory

Tatiana Ivanova Ian Hill OECD NEA

ANS 2018 Annual Meeting Philadelphia, PA 17-21 June 2018

This presentation was prepared at Idaho National Laboratory for the U.S. Department of Energy under Contract Number (DE-AC07-05ID14517)

Idaho National Laboratory

Acknowledgments

The ICSBEP and IRPhEP are a collaborative effort

- Scientists, engineers, administrative support, program sponsors
- *****26 different countries have participated
 - \circ 22 in ICSBEP
 - 20 in IRPhEP

Without these dedicated individuals, these benchmark projects would not exist.

INTERNATIONAL BENCHMARK PROGRAMS

Idaho National Laboratory

BETTER POLICIES FOR BETTER LIVES

NEA

IRPhEP & ICSBEP Annual Technical Review Meetings

- October 23-26, 2017
- Washington, DC, USA
- Hosted by US NCSP at GWU

- > October 22-26, 2018
- OECD NEA, Paris, France
- & Possibly SINBAD

International Handbook of Evaluated Criticality Safety Benchmark Experiments

August 2018 Edition

- 22 Contributing Countries
- ~70,000 Pages
- 574 Evaluations
 - 4,916 Critical, Near-Critical, or Subcritical Configurations
 - 45 Criticality-Alarm-Placement/Shielding Configurations
 - 215 Configurations with Fundamental Physics Measurements
 - 838 Unacceptable Experiment Configurations

http://icsbep.inl.gov/

https://www.oecd-nea.org/science/wpncs/icsbep/

Breakdown of Current ICSBEP Benchmark Specifications

- > 748 plutonium experiments
 - ✤ 36 compound
 - 123 metal
 - ✤ 589 solution
- 1426 highly enriched uranium experiments
 - 291 compound
 - 601 metal
 - ✤ 527 solution
 - ✤ 2 mixed compound/solution
 - ✤ 5 mixed metal/solution
- 274 intermediate- and mixedenrichment uranium experiments
 - 156 compound
 - ✤ 53 metal
 - ✤ 65 solution
- 1668 low enriched uranium experiments
 - ✤ 1407 compound
 - ✤ 82 metal
 - 119 solution
 - ✤ 60 mixed compound/solution

- 6 compound
- 11 metal
- 227 solution
- 536 mixed plutonium-uranium experiments
 - 301 compound
 - 52 metal
 - ✤ 86 solution
 - 76 mixed compound/solution
 - ✤ 21 mixed metal/compound
 - 20 special isotope experiments
 - metal (²³⁷Np, ²³⁸Pu, ²⁴²Pu, & ²⁴⁴Cm)
- 9 criticality-alarm/shielding experiments
 - 45 unique configurations with numerous dose points
- 8 fundamental physics experiments
 - 215 unique measurements such as fission rates, transmission measurements, and subcritical neutron multiplication measurements

New Content in the Handbook 2018 Edition

sha the Revisions

Approved

PRIVAL

Make

> 37 Revised Evaluations

- ✤34 Minor
- ***3 More Notable**
- > 4 New Evaluations
- Guides
 Reference Guide
 Uncertainty Guide
 IRPhEP

Minor Revisions to the Handbook 1-4:

> PU-MET-FAST-001

- Table 54 referenced correctly in text.
- Heading of Table 54 corrected.

> PU-SOL-THERM-019

 Corrections to Figures 16 and 17: clarification of channel positions.

> PU-MET-MIXED-001

Updated MCNP sample input decks due to lost particles.

> PU-SOL-THERM-039

Corrected the exponent for O of Case 5 in Table 3-6 from "E02" to E-02".

Minor Revisions to the Handbook 5-9:

> HEU-MET-FAST-073

Swapped fast and intermediate fission distribution values in Table 36.

> HEU-MET-FAST-083

Removed the verbiage "(Case 1)" from the headings of Tables 29 and 30.

> HEU-MET-THERM-032

Table 13 change value 0.0065 to 0.00065.

> HEU-MET-MIXED-005

Updated MCNP sample input decks due to lost particles.

> HEU-SOL-THERM-046

Corrections to Figures
 16 and 17: clarification
 of channel positions.

Minor Revisions to the Handbook 10-13:

> IEU-COMP-FAST-001

Headers of Table 27 for the second and third columns renamed as "Radial Blanket RR1" and "Radial Blanket RR2 & Matrix", respectively.

> IEU-MET-FAST-011

Update title, crosslink, and verbiage to match MIX-MET-FAST-008

> IEU-MET-FAST-013

Replaced the atom density for Mg in Table 18 for AR3 material with the value 1.52717E-4 a/b-cm.

> IEU-MET-FAST-020

 Various corrections and clarifications in the text

Minor Revisions to the Handbook 14-16:

➢ LEU-COMP-THERM-067 ➢ LEU-COMP-THERM-080

Corrected Figure 14: moved Mo rod from position S11 to U11.

> LEU-COMP-THERM-076

Corrected Figure 29: position of fuel rods and steel baffle shifted three grid positions to the left. In the paragraph between Tables 38 and 39, the coordinates in the text have been swapped: "x=25.43 cm, y=7.2 cm" is now "x=-7.2 cm, y=25.43 cm", and "x=-25.43 cm, y=5.6 cm" is now "x=-5.6 cm, y=*25.43 cm".

Minor Revisions to the Handbook 17-18:

> LEU-COMP-THERM-096

- Corrected Figure 33: fixed fuel rod lattice arrangement.
- Corrected Figure 36: fixed alignment for line for "(top of model)".
- Corrected Figure 56: fixed fuel rod lattice arrangement
- In the paragraph after Table 40, the coordinates in the text have been swapped: "x=32.385 cm, y=6.4 cm" is now "x=6.4 cm, y=-32.385 cm", and "x=-32.385 cm, y=-6.4 cm" is now "x=-6.4 cm, y=32.385 cm".
- Updated sample calculations in Section 4 and input decks.

> LEU-COMP-THERM-097

- Corrected Figure 42: aluminum rod outer diameter (OD) is 0.638736 cm.
- Corrected Figure 52: placement of one fuel rod updated.
- Corrected Figure 62: added three fuel rods for a total of 1097.

Minor Revisions to the Handbook 19-21:

> LEU-MET-THERM-003

Corrected Figure 3-5: the dump line radius is 22.066 cm.

LEU-MET-THERM-005

> IEU-MET-THERM-001

- Changed Identifier
- Corrected Figures 1-20, 1-21, 3-5, and 3-6 and Table 1-7: Core 0 has 36 unit cells, not 31.
- Corrected Figure 3.3 and Table 3-14: now includes control rod positions for Core 0.

> LEU-MET-THERM-006

Included MCNP6 sample calculations in Section 4 (Table 13.c) and input decks in Appendix A.3. These were provided by Bor Kos from Jožef Stefan Institute, Slovenia.

Minor Revisions to the Handbook 22-26:

LEU-MISC-THERM-001

Replaced Figure 8.a with Figure 9.a found in LEU-MISC-THERM-006 and -007.

> LEU-MISC-THERM-002

Replaced Figure 8.a with Figure 9.a found in LEU-MISC-THERM-006 and -007.

> LEU-MISC-THERM-003

Replaced Figure 8.a with Figure 9.a found in LEU-MISC-THERM-006 and -007.

> LEU-MISC-THERM-005

 Replaced Figure 8.a with Figure 9.a found in LEU-MISC-THERM-006 and -007.

> LEU-MISC-THERM-007

Corrected Table 13.b: Second "Case 8" should be "Case 9"

Minor Revisions to the Handbook 27-30:

> MIX-COMP-THERM-011

- Corrected Figure 10: Distance from top of Fuel pin to top of Tie-rod is 34.2 cm, not 34.8 cm.
- Corrected KENO input decks and updated Section 4 sample calculations.

> MIX-MET-INTER-001

Updated title, cross-link, and verbiage to match MIX-MET-FAST-008

aho National Laboratory

> MIX-MISC-THERM-002

- Corrected exponent of water densities in Table 19 to be "E-02" instead of "E-01".
- Corrected Figure 15: distance between Outer tank and Support plate should be 27.34 cm, not 27.14 cm.
- Corrected Table 15.a: pitch is 2.5 cm, not 2 cm; the solution and stainless steel volume fractions are 18.41 % and 81.59 %, respectively, for Bottom grid outside fuel assembly.

> MIX-MISC-THERM-003

- Various clarifications in the text.
- Corrected Figures 8, 9, and 10: added grid diameter of 28.5 cm. Corrected critical height position.

15

Minor Revisions to the Handbook 31-34:

FUND-IPPE-VdG-MULT-TRANS-001

Corrected Tables 2, 4, 7, 11, B.4, B.5, B.6: data was shifted across rows

> ALARM-TRAN-AIR-SHIELD-001

aho National La

Removed sentence from Appendix A that incorrectly indicated that weight window input files were available on the handbook.

> ALARM-TRAN-CH2-SHIELD-001

Removed sentence from Appendix A that incorrectly indicated that weight window input files were available on the handbook.

ALARM-TRAN-PB-SHIELD-001

Removed sentence from Appendix A that incorrectly indicated that weight window input files were available on the handbook.

Noteworthy Revision 1: HEU-SOL-THERM-048

- Reevaluated uncertainty in tygon tubing
 - *****Section 2.5.2
 - Effectively doubled uncertainty
- Reduced total number of acceptable benchmarks
 - $20 \rightarrow 11$
 - **Within 2σ**
 - 340 930 pcm uncertainty

Noteworthy Revision 2: LEU-COMP-THERM-072

- Improved quality of Figures 4 and 12
- Minor update to uncertainty analysis
- Updated Section 4 sample calculations

4	Z					1	C	a	S	e	7																						
						8	A	n	ra	y		3.	3	×	2	3.	3:		10)8	9	1	0	d	5							_	
						1	S	q	u	a	re	e	F	oi	to	ł	1:	1	ι.	1	C	n	n										
						Ø	C	ri	it	ic	22	al	1	h	ei	ig	;ł	it	•	6	9.	.4	3	1	¢	n	1						
		1		~	~		2																			~							
8	8	8	8	8	8	2	Ś	2	8	8	Ś	8	Ş	8	8	Š	Ś	Š	8	8	8	8	8	X	8	8	8	8	8		8	8	8
Q 4				8	8			200		Ŏ ŧ	K 4	•	•	0) I	0 F	×	×	8	8	X	X	X	X	×	×	X	X	8	X	X	X	*
		•		•	•		•		•	Ì	1	•	•	•			Î	Į	I	ł	Ì	1	1	ł	Ī	Î	ł	ľ	•	•	l	8	8
			•		•	•	•			ł	Î	•	•	•			ŧ	ŧ	ŧ	ŧ	ŧ	Ĵ	i	ŧ	ŧ	ŧ	Ì		C		ŧ	Ř	8
	•••	•	•	•	•	•	•	•	•	ł	1	•	•	•	•	•	ł	ł		1	ł			ł	ł	ł	ł		•	•	ł	18	8
		•	•	•	•	•	•	•	•	ţ	ţ	•	:	:	•		ł	ţ	į	ţ	ł	ł	1	1	ţ	ł	ł	ľ			ł	8	8
		•	•	•	•	•	•	•		ŧ	1		•	•	•		Ŷ	ŧ	\$	\$	Ŷ	1	1	Ŷ	\$	ŧ	ŧ	ŧ			ţ	R	8
	•••	•	•		•	• •	•	•		Ŧ		•	•	•			ł	ł	ł	ł	Į			1	Ŧ	ł					ł	K	8
•	::	•	•	•	•	•	•	•		ł		•	:	•	•		ł	¥	ł	ł	Ŧ			ł	Ŧ	ł	ł	ŀ	E		ł	8	8
•		•	•	•	•	•	•	•	•	¥	-	•	•	•	•	e	ł	Ŧ	ł	-	ł	3	1	ł	Ŧ	¥	ł	ł	•	•	ł	8	8
•	::	•	•	•	•	•	•	•	•	ł		•	•	•	•	•	ł	ł	1		ł				ł	ł	ł	•	•	•		18	8
•	•••		•	2	•		•	•	٠	1	1	•	•	•		1	1	1	1		3	•		1	1	1	1		•	•	I.	МČ	SS

Case 8: Array 32× 32: 1024 rods Square pitch: 1.1 cm Critical height: 81.854 cm

Case 9: Array 35 × 35: 1225 rods _____ Square pitch: 1.075 cm Critical height: 82.227 cm

Noteworthy Revision 3: LEU-COMP-THERM-079

- Minor update to array pitch
- Reevaluated uncertainties
 - Fuel element outer diameter
 - Array pitch
 - Temperature corrections

New 1: LEU-COMP-THERM-98

(WREC) SPP Criticals

- ✤UO₂ loadings only
- 7 critical configurations

Evaluation results pending final review

New 2: LEU-COMP-THERM-100

- (IRSN) UO₂ rods around polytetrafluoroethylene block
 - 2 critical configurations
- Evaluated
 - Uncertainty ~80 pcm
 - Sample calculations within 0.48σ to 2.16σ

New 3: LEU-SOL-THERM-012

- > (JAEA) TRACY
 - 10%, uranyl nitrate
 - *1 critical
 - *1 supercritical, 3\$

Evaluated

- Uncertainty ~110 pcm
- Sample calculations within 0.27%, 3σ

New 4: IEU-MET-FAST-024

> (JAEA) FCA IX-7

Fundamental configuration prior to minor actinide measurements

Evaluated

- Heterogeneous and Homogenous critical benchmark models
- Uncertainty ~140 pcm
- Sample calculations within 0.4 %, 3σ

Evaluations Planned for Future Publications

- > Brazil
 - IPEN/MB-01 with U-Mo Plates
- France
 - * MIRTE
 - Pu Nitrate Annular Cylinders
- > Japan
 - FCA IX-7 Assembly
- Slovenia
 - ASPIS-Fe Shielding Benchmark
 - Lucite-Moderated and -Reflected HEU Foils

- United States
 - TUpCX Experiments
 - BeRP with CH₂/Ni Composite Reflector
 - BUCCX with Titanium Sleeves
 - FFTF Pin Criticals in Organic Moderator
 - ✤ GODIVA-IV Revision
 - ISSA Subcritical Multiplicity
 - KRUSTY
 - Np Subcritical Measurements
 - * SCRaP
 - TEX Experiments
 - TRX Critical Experiments
 - UF₆ Cylinders
 - University of New Mexico AGN Reactor

A Short Guide on Citing of the ICSBEP/IRPhEPHandbooks

and Individual Evaluations

Prepared by

Žiga Štancar

Luka Snoj

Jožef Stefan Institute

IRPhEP Handbook:

International Handbook of Evaluated Reactor Physics Benchmark Experiments / Nuclear Energy Agency. - Paris : OECD Nuclear Energy Agency, 2017. - (NEA;7329). ISBN #

IRPhEP Individual Evaluations:

Štancar, Ž., et al. Reaction Rate Distribution Experiments at the Slovenian JSI TRIGA Mark II Research Reactor, TRIGA-FUND-RESR-002. In: *International Handbook of Evaluated Reactor Physics Benchmark Experiments* /Nuclear Energy Agency. - Paris : OECD Nuclear Energy Agency, 2017. - 251 pp. -(NEA;7329). ISBN #

IRPhEP Uncertainty Guide

NEA/NSC/DOC(2017)DRAFT

- Criticality
 * ICSBEP
- Buckling (ref report)
 - Zoltán Szatmáry
 - U. Budapest
- Spectral Characteristics
- Reactivity Effects
 Reactivity Coefficients
- > Kinetics
- Reaction-Rate Distribution
 - Power Distribution
- > Not yet available
 - Isotopic measurements
 - Other miscellaneous types

ldaho National Laboratory

INTERNATIONAL REACTOR PHYSICS EXPERIMENTS EVALUATION PROJECT (IRPhEP) GUIDE TO THE EXPRESSION OF UNCERTAINTY

PRIMARY AUTHOR:

Adimir Dos Santos Instituto de Pesquisas Energeticas e Nucleares

CONTRIBUTING AUTHORS:

Anatoli M. Tsiboulia Institut of Physics and Power Engineering

> Luka Snoj Vladimir Radulović Žiga Štancar Jozef Stefan Institute

Zoltán Szatmáry Institute of Nuclear Techniques of the Technical University of Budapest

> Patrick D. Blaise Centre d'Etudes de Cadarache

John D. Bess Margaret Marshall

Idaho National Laboratory

J. Blair Briggs

Under Contract with the OECD NEA

Conclusions

- The ICSBEP and IRPhEP continue to provide high-quality integral benchmark data
- Valuable for nuclear data testing, uncertainty reduction, criticality safety, reactor physics, advanced modeling and simulation
- Data contributed from 26 countries
- Enable current and future activities supported by experimental validation

¿Questions?

Extra Slides

Countries Participating in the ICSBEP & IRPhEP

- Argentina
- > Belgium
- Brazil
- Canada
- People's Republic of China
- Czech Republic
- France
- Germany
- Hungary
- India
- Israel
- > Italy
- Japan

- Kazakhstan
- Poland
- Republic of Korea
- Russian Federation
- Serbia
- Slovenia
- South Africa
- Spain
- Sweden
- Switzerland
- United Kingdom
- United States of America

Directed and Distributed via the OECD NEA

Managed by an Elected Chair

Current OECD/NEA Member Countries

Argentina	France	Latvia	Russia
Australia	Germany	Luxembourg	Slovak Republic
Austria	Greece	Mexico	Slovenia
Belgium	Hungary	Netherlands	Spain
Canada	Iceland	New Zealand	Sweden
Chile	Ireland	Norway	Switzerland
Czech Republic	Israel	Poland	Turkey
Denmark	Italy	Portugal	United Kingdom
Estonia	Japan	Romania	United States
Finland	Korea		

