A First Look at the Thermal Neutron Scattering Law for H-UH₃

Michael L. Zerkle

Naval Nuclear Laboratory

2018 ANS Annual Meeting Philadelphia, PA June 17-21 , 2018

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Bechtel Marine Propulsion Corporation, a wholly owned subsidiary of Bechtel National, Inc.

Outline

• Background

- Benchmarks
- Phase Diagram
- Crystal Structure
- Atomistic Simulation
 - AILD Evaluation Process
 - DFT/LD Calculations
 - Phonon Density of States
- TSL Evaluation
- Conclusions
- Next Steps

Background

- Uranium Hydride (UH₃) has been used in several historical critical experiments
 - G. A. Linenberger, et al., *Nucl. Sci.* Eng., 7, 44-57 (1960).
 - HEU-COMP-INTER-003, "Reflected Uranium-Hydride Critical Assemblies"
 - 3 doubly reflected cases
 - 4 singly reflected cases
- Goal of this work is to evaluate TSLs for UH_3
 - Using *ab initio* lattice dynamics (AILD) approach
 - Determine bias associated with free gas approximation

HEU-COMP-INTER-003

Figure 2. Schematic of the Doubly Reflected Assembly.

Figure 3. Schematic of a Singly Reflected Assembly.

Uranium-Hydrogen Phase Diagram

- H₂ (gas) reacts with U (metal) to form uranium hydride (UH₃)
- At room temperature forms two phase solid solution of α-U (metal) + UH₃
- UH₃ fraction increases with H/U atom ratio

Phase diagram for the Uranium-Hydrogen system. From W. M. Mueller, *et. al.*, *Metal Hydrides*, Academic Press, New York, 1968.

UH₃ Crystal Structure

- UH₃ has two allotropes, both cubic
 - Pm3n symmetry group
- α -UH₃ only stable at low (cryogenic) temperatures
 - 2 molecules (8 atoms) per unit cell
 - 4.16 Å lattice constant
- β -UH₃ stable at room temperature and above
 - 8 molecules (32 atoms) per unit cell
 - 6.643 Å lattice constant
- H-UH₃ TSL developed using first-principles or ab initio lattice dynamics (AILD) approach
 - Density Functional Theory (DFT) to calculate interatomic Hellman-Feynman forces for crystal structure
 - Lattice Dynamics (LD) to determine dispersion relations and phonon density of states (PDOS)
 - H-UH₃ TSL evaluated in incoherent approximation using NJOY/LEAPR

 α -UH₃ Unit Cell

 β -UH₃ Unit Cell

AILD-based TSL Evaluation Process

UH₃ Structure Optimization

- DFT structure optimization using VASP (Vienna Ab Initio Simulation Package)
 - GGA exchange and correlation functional
 - Hubbard U parameter correction applied to U 5f electrons
 - Account for effect of strong correlation of 5*f* electrons on chemical binding of U molecules
 - Spin-polarized magnetism
 - 500 eV planewave cutoff
 - k-point spacing of 0.2 Å⁻¹ (5×5×5 k-mesh)
 - 10⁻⁶ eV total electronic energy threshold
- Hubbard U = 1.2 eV yields lattice parameter of a = 6.6458 Å
 - 0.04% higher than measured lattice parameter of a = 6.643 Å

VASP structure optimization of UH_3 using GGA+U.

UH₃ Lattice Dynamics

- LD calculations performed using PHONON
 - Interatomic forces calculated by VASP
 - 2×2×2 supercell (256 atoms)
 - ±0.02 Å atom displacements
 - 0.02 Å⁻¹ k-point spacing (3×3×3 k-point mesh)
- Dispersion relations (at right)
 - Well separated acoustic and optical modes
 - Lower branches are acoustic modes mainly due to heavy U atom vibrations
 - Higher branches are optical modes mainly due to light H atom vibrations
 - Relatively wide and dense optical mode

Calculated dispersion relation for UH₃ along the highest-symmetry points of the Brillouin zone.

Calculated Phonon DOS for UH₃

Calculated Phonon DOS for UH₃

H-UH₃ TSL Evaluation

- H-UH₃ TSL generated using NJOY/LEAPR
 - H-UH₃ phonon DOS from PHONON calculation
 - Incoherent approximation
 - Atomic mass ratio and free atom scattering cross section for ¹H from ENDF/B-VII.1
 - α and β grids optimized to treat scattering up to 5 eV without SCT approximation
 - Temperature evaluated at 293.6 K (room temp.)
- U-UH₃ TSL not evaluated at this time
 - LEAPR can't properly treat U coherent elastic scattering in UH₃ without extensive modifications
 - Plan to evaluate U-UH₃ using FLASSH
 - Proper treatment of coherent elastic scattering and relax incoherent approximation

Total, elastic, and inelastic scattering cross section for $H-UH_3$ at 293.6 K generated by NDEX

Conclusions

- Calculated phonon DOS for UH₃ using AILD methods
- Optical mode consistent with inelastic neutron scattering measurements performed at NIST
- H-UH₃ TSL evaluated using calculated phonon DOS
- Broader optical mode in UH₃ results in shallower multiphonon scattering peaks in the H-UH₃ inelastic and total scattering cross section relative to other metal hydrides that have been evaluated

Next Steps

- Evaluate $U-UH_3$ in FLASSH
 - Generic coherent elastic scattering capability
 - Relax incoherent approximation
- Re-evaluate $H-UH_3$ in FLASSH
 - Best to have H-UH₃ and U-UH₃ evaluated in same code using consistent approximations
- MC21 benchmark testing using HEU-COMP-INTER-003
 - Impact of H-UH₃ and U-UH₃ TSLs
 - Bias associated with free gas approximation

Backup Slides

UH₃ Lattice Dynamics

Simple Cubic Brillion Zone 1g,

Calculated dispersion relation for UH₃ along the highest-symmetry points of the Brillouin zone.