

Sloped Bottom Tanks and Areal Density – Part I: Case Study in H-Canyon Decanters

Tracy Stover, John Lint, Meagan Strachen

Savannah River Nuclear Solutions, LLC ANS Annual Conference June 2018

Introduction - Process

- HM-Process to separate and purify Highly Enriched Uranium for downblend to Low Enriched Uranium
 - 1st cycle separates
 - 2nd cycle purifies
- Solvent extraction carried out in mixer settler banks counter current flow chemical contactor systems
- Product solution passed through decanters between cycles
 - Adds hold up time
 - Allows further separation of aqueous product from remaining trace organic solvent phase

Decanters

- Product decanters come in 8'x11' and 10'x11' sizes, similar internal design
- Sloped bottom
 - Matches H-Canyon floor slope
 - 3.125% grade
 - Air pocket between bottom head and canyon floor ~3"
- 3 internal sections
 - Settling, organic, aqueous
 - Piping, heating/cooling coils

Decanters

- During processing, subject to 11.5 g
 U-235/L single parameter limit
- Once processing stops, subject to 700 g U-235 single parameter limit
 - Not permitted for interim storage
 - Volume of 13500 to 21000 L results in concentration as low as 0.03 g U-235/L
 - Requires multiple flushes into downstream tanks
 - Taxes system and operators
 - Creates dilute solution that must be re-concentrated

Methodology – Modeling & Assumptions

- Operations asked Criticality Safety for relief from the 700 g U-235 limit, perhaps using the areal density value already listed as a facility control
- Fixed U-235 masses based on areal density value of 0.40 g U-235/cm² and SETTLING CHAMBER cross sectional area.
 - For 8x11 tank: 3324.5 g U-235 (3.3 kg)
 - For 10x11 tank: 6243.1 g U-235 (6.2 kg)
 - Both much greater than 700 g
- Acid neutral, pure uranyl nitrate solution at 73 wt.% enrichment

Methodology – Modeling & Assumptions

- Fixed fissile mass, variable concentration → variable height
 - Concentration limited to near precipitation of 650 g U/L down to the point of overflow of the center chamber at ~1.3 g U/L
- Tank modeled as stainless steel cylinder with inner chamber
- Stainless steel wedge used to model sloped bottom
 - Left as solid steel, eliminating air pocket in model
 - Conservatively increases reflection into fissile solution

Methodology - Partially Filled Sloped Bottom

- Solution concentrates until its volume eventually becomes flush with, then drops below shallow end of bottom head
- Significance of sloped bottom tank and why we don't use areal density outright here!
 - Areal density is typically projected onto surface <u>ORTHONORMAL</u> to the other two dimensions. This bottom is not.
- Solution takes the shape of a truncated wedge:

 To model this, must have method to determine volume and convert back and forth with height and concentration

Methodology - Partially Filled Sloped Bottom

- Volume require numerical integration
 - Integrate area over height
- If deep end depth is h and fraction slope of the tank is l, then volume of the solution is:

$$V_{S} = \int_{0}^{h} \left\{ \frac{-r^{2}}{2} \left[\left(2a\cos\left(1 - \frac{2r - h'/l}{r}\right) \right) \right] \right\}$$

 Line a is the line solution makes with the shallow end of the tank

Methodology - Partially Filled Sloped Bottom

- As is the surface area we are interested in
- Area of the yellow segment is

$$\frac{r^2}{2}(\theta - \sin \theta)$$

- Knowing 2r = Q + L
- L is determined by depth of solution and fractional slope
- At a solution depth of h' $\theta = 2a\cos\left(1 \frac{2r h'/l}{r}\right)$

Mechanical Tolerance

- Dilution cases assumed nominal geometry of tank
- Peak cases between 9.2 and 70 g U-235/L were rerun
- Selection of mechanical tolerances examined for each concentration in each diameter decanter:
 - 1) replace all steel with water
 - 2) replace bottom head wedge of steel with wedge of void
 - 3) reduce inner diameter of settling chamber by 2.54 cm

Leaks

- A known small slow leak exists between the settling chamber and the aqueous chamber, at the bottom weld, in at least one decanter
- Given enough time, solution would equilibrate through the leak
- Analyze bounding cases with equilibrated solution and solution only in aqueous section

Leaks

Computational Modeling & Limit

- All modeling is performed in the KENO-VI module of SCALE 6.1
- Validated internally for applications to HEU solution processing
- K-safe determined, with margin, to be 0.9664

Results – Concentration

Results - Mechanical Tolerances

Results - Mechanical Tolerances

Results - Leaks

Results - Leaks

Conclusions

- Despite the slight slope of 3.125% the areal density based mass is usable as a limit
- All cases remained safely subcritical for 3324.5 g U-235 in the 8x11 decanter and 6243.1 g U-235 in t he 10x11 decanter
- Reduces operator burden, operational time, and process waste
- Impetus for further investigation...

Further Investigation

- Why does areal density work? Small mass? Slight slope?
- Does it work in other sloped cases?
- What does areal density mean in a system where the plane of projection is NOT orthonormal to the other dimensions?
- Is there a functional relationship between slope of the tank and the areal density projected onto that non-orthonormal surface?
- Further investigation was warranted and is presented in Part II

Acknowledgements

- This work was funded as part of DOE-EM operational budget for H-Canyon.
- Thanks to the men and women of facility engineering for prompting this study.

Additional Slides

Cooling/Heating Coils

Analytical Breakdown of Tank Volumes

$$V(h) = V_1(h) + V_2(h) + V_3(h) + V_4(h) - V_{coils}(h)$$
$$V_{outer}(h) = V_1(h) + V_3(h) - V_{coils}(h)$$

