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Introduction

« Criticality safety analyses rely on the availability of relevant benchmark
experiments to determine justifiable margins of subcriticality.

« Validation efforts seek use benchmark experiments to estimate the
computational bias in the predicted eigenvalue for applications.
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Introduction

 This study is meant to compare the predictive capabilities of criticality
safety validation approaches.

 This blind benchmark study applies predictive capabilities to low-
moderated MOX powder experiments with few representative
experiments.

— This study was also performed using 10 cases with known biases.
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Introduction

e Our study compares three bias estimation methodologies:
— Trending Analysis (USLSTATS, ORNL)
— Non-parametric Methods (Whisper, LANL)
— Experimental Data Assimilation (TSURFER, ORNL)
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Trending Analysis — USLSTATS

« USLSTATS is a generic parameter trending analysis tool from ORNL.

« USLSTATS provides several predictive confidence parameters,
Including:
1. Expected application bias
2. Confidence band with administrative margin (USL1)
* Does not give credit for positive biases.
3. Single-sided, uniform-width confidence interval (USL2)

* The administrative margin was set to zero for this exercise for all
methods.
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Trending Analysis - Sample USLSTATS Output
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Trending Analysis — USLSTATS

 Trending parameters examined in this study included:
1. The coefficient of similarity, c(k) or c,
2. The Energy of the Average Lethargy of Fission (EALF)

 Since the UACSA Phase V exercise is a blind benchmark study, we
don’t know for sure what the correct answer is.

— Cases with known biases were examined to explore the accuracy of the bias
estimation methods.

— For the unknown bias cases, emphasis will be placed on methods that
produce consistent results.
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Trending on EALF

tsunami-ip - trending with EALF
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Benchmark Similarity Assessment

 The similarity coefficient, c(k) or c,, describes the amount of nuclear
data-induced uncertainty that is shared by two systems.
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Benchmark Experiment Similarity
Coefficients - 44-group Covariance Data
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Benchmark Experiment Similarity
Coefflc:lents 56-group Covariance Data
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Bias Results: Known Bias Cases
USLSTATS ¢, Trending Analysis

56-group covariance data, no PU-COMP-MIX Experiments
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USLSTATS Results - Takeaways: | s2oEror
2-3 o Error
>3 o Error

. Best
Difference c,> 0.65
. AllExp. | ¢,>0.2 | * ¢>08 | ¢>09 |c>0.95 | TSURFER
(Units of o) k c,> 0.55 k k k Results
44-group | Average 3.43 11.72 3.03 1.26* 1.10* 4.54* 1.56
Covariance
Data Max 8.36 35.98 8.24 2.38* 2.44* 9.11* 3.38
56-group | Average 5.23 7.93 3.86 1.20* 1.17* 3.46*
Covariance
Data Max 15.55 22.27 10.11 2.12* 2.31* 7.06*

* Too few cases existed to compute bias estimates for at least one application.
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USLSTATS Results - Takeaways.

« USLSTATS predicted accurate computational biases when enough
high similarity benchmark experiments were present.

* The “best” USLSTATS bias predictions were more accurate than the
“best” TSURFER bias predictions.

* This comparison could be strengthened if the benchmark experiment
results had smaller error bars.
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USL Results: Known Bilas Cases
USLSTATS ¢, Trending Analysis

56-group covariance data, no PU-COMP-MIX Experiments
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Bias Results: Unknown Bilas Cases
USLSTATS ¢, Trending Analysis
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USL Results: Unknown Bias Cases
USLSTATS ¢, Trending Analysis

56-group covariance data, no PU-COMP-MIX Experiments

FRACND

USLSTATS: All Exp.

USLSTATS: ¢ > 0.20
USLSTATS: ¢ > 0.55
USLSTATS: ¢, > 0.80
USLSTATS: ¢, > 0.90
USLSTATS: ¢ > 0.95

1.00

0.95
7 0.90
-]

0.85

0.80 Case 1 Case 2 Case 3 Cased4 Caseb Case 6 Case 7 Case 8 Case9 Casel0 Casell Casel2 Casel3 Casel4 Casel5

Benchmark Case

Max ¢, | 0.6935 | 0.6627 | 0.8370 | 0.6760 | 0.6822 | 0.8347 | 0.7753 | 0.7194 | 0.9293 | 0.7290 | 0.6683 | 0.8649 | 0.6566 | 0.6716 | 0.7950
Casesw/| 0 0 0 0 0 0 0 1 0 0 0 0 0 0
¢ >0.9

Estimating Computational Biases for Criticality Safety Applications with Few Neutronically Similar Benchmarks

%

OAK RIDGE

National Laboratory




TSURFER Tools for Data Adjustment "
and Experimental Data Assimilation

X TSURFER

« TSURFER: Tool for S/U analysis of Response Functionals using
Experimental Results

— Biases are observed as differences between benchmark and computed
quantities (k.«, reaction rates, etc.)

— TSURFER uses sensitivity information to consistently adjust nuclear data
and reconcile biases between integral experiment results and computational
predictions.

— Where the cross sections and covariance data are modified, the
modifications can be used to project biases from the benchmarks to targeted
application systems.
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TSURFER Cross Section Adjustments
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A Note on Bias

* The computational bias measures the predictive capabilities of a
modeling and simulation tool.

e For USLSTATS:

Relative Bias = C/Egxtrapotatea — 1

* For TSURFER:

, , (Calculated Response — Adjusted Response)
Relative Bias =

Calculated Response
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Bilas Estimation
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Adjusted Cross Sections Reduce

Data-Induced Biases

e Original Application Uncertainty is:
0.520% Ak/k

e Adjusted Application Uncertainty is:
0.119% Ak/k

e Interpretation: ~80% of uncertainty is quantified
through validation with experiments.

e Remaining uncertainty highlights gaps in
available validation data.

Estimating Computational Biases for Criticality Safety Applications with Few Neutronically Similar Benchmarks

NUCLIDE | REACTION || CONTRISUTION

u-238 n,gamma -2.1084E-01
pu-239 nubar 1.2761E-01
pu-239 fission 39872E-02

o-16 elastic 3.2243E-02
pu-239 n,gamma -2.5810E-02
pu-239 chi 1.0248E-02
u-235 chi 2.9940E-04

fe-36 n,gamma 1.7158E-02
u-235 fission -1.2351E-02
pu-240 n,gamma -1.3162E-02
u-238 elastic 27715E-03
u-235 n,gamma 1 .0599E-03

h-1 elastic 2. 7348E-03
u-238 n,n' -6.8963E-03
u-235 nubar -4.1298E-03
fe-56 elastic -6.0079E-03

h-1 n,gamma 4. 1893E-03
0238 || nubar | 3.1408E-03 |

¥ OAK RIDGE

(. National Laboratory



Bias Results: Known Bilas Cases
TSURFER Analysis
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TSURFER Results - Takeaways: <20 Error
2-3 o Error
>3 o Error

: . . Best
Difference Strict Medium Loose
(Units of 0) | Filtering Filtering Filtering USLSTATS
Results
44-group Average 3.04 1.61 1.59 1.20*
Covariance
Data Max -8.13 -3.03 -3.04 2.12*
56-group Average 3.39 1.56 1.53
Covariance
Data Max -9.59 -3.38 -3.35

* Too few cases existed to compute bias estimates for at least one application.
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TSURFER Results - Takeaways:

« TSURFER bias predictions were slightly less accurate than the best
USLSTATS bias predictions.

 The TSURFER bias predictions were significantly more consistent
than the USLSTATS predictions (more discussion about this later).

%QAK RIDGE

tional Laboratory

Estimating Computational Biases for Criticality Safety Applications with Few Neutronically Similar Benchmarks



USL Results: Known Bilas Cases
TSURFER Analysis
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USL Results: Unknown Bias Cases
TSURFER Data Assimilation Analysis
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USL Results: Unknown Bias Cases
TSURFER Data Assimilation Analysis
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TSURFER Results - Takeaways:

* TSURFER USL estimates are much closer to 1.00 than USLSTATS
estimates.

TSURFER: ~0.99 USLSTATS: 0.96 — 0.98
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Whisper Methodology

* Non-parametric, extreme-value theory based method for determining
USL'’s and margins of subcriticality (MOS).

— Developed by Kiedrowski at LANL in 2014
* Whisper USL’s are designed to be conservative.
— Adding more benchmark cases can only increase the MOS.

* Results presented here were obtained using an independently-
developed implementation of the Whisper methodology.
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Whisper Methodology

* Whisper weights the importance of experiments based on their similarity
to the target application.

hreshold)

ct —ct
weight; = ( kK k

o (max(ck) . C}t{hreshold)

* Whisper includes additional benchmark experiments until a cumulative
weight of 25 is obtained.

— Treatments exist for applying the Whisper method to cases with few similar
benchmarks.
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Whisper Methodology

« Whisper uses data assimilation methods to identify inconsistent
benchmark experiments and omit them from the USL calculation.

* Whisper uses the adjusted response uncertainty to provide additional
subcritical margin.

— Performing a convergence study on the adjusted response uncertainty is
helpful for Whisper analyses.

MOS = MOSSOftWare + MOSdata + I\/IOSapplication

* A detailed discussion of the Whisper methodology is available in:
B.C. Kiedrowski, et. al., “Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software
for Determining Baseline Upper Subcritical Limits,” Nucl. Sci. Eng. (2015).
¥ OAK RIDGE
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Bias Results: Known Bias Cases
Whisper Implementation Analysis

2500

2000

1500

1000

500

o

—-500

Computational Bias (pcm)

—-1000

—-1500

—2000

memmﬂm

IRRE0NEN

Largest Benchmark Bias
Reference Bias

Whisper:
Whisper:
Whisper:
Whisper:
Whisper:
Whisper:
Whisper:

cr > 0.00
cp > 0.20
ey > 0.55
¢ > 0.80
cp > 0.90
cp > 0.95
LANL Method

HMF-025-001

HMF-086-005

IMF-007-001

LCT-010-001

LCT-010-012

LCT-040-010

Benchmark Case

LCT-049-007

PST-005-005

PST-007-004

PST-011-003

Max ¢,

0.9986

0.9962

0.9642

0.9674

0.9694

0.9527

0.9766

0.9998

0.9999

0.9982

Cases with
¢, >0.9

14

14

10

16

2

55

56

55

Estimating Computational Biases for Criticality Safety Applications with Few Neutronically Similar Benchmarks

%OAK RIDGE

National Laboratory




Whisper Results - Takeaways:.

* Whisper bias estimates should be interpreted differently than
USLSTATS or TSURFER bias estimates.

* When few highly similar experiments exist, the Whisper bias
approaches the bias of the most conservative experiment available.

* As the ¢, threshold decreases, the Whisper bias approaches the bias
of the most conservative experiment available.
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USL Results: Known Bilas Cases
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Bias Results: Unknown Bias Cases
Whisper Implementation Analysis
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USL Results: Unknown Bias Cases
Whisper Implementation Analysis
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Standard Deviation of Bias Estimates

Covariance | Application USLSTATS TSURFER (-:; igeszl\itF:\ Whisper (ca\évehsisvf/)ﬁ; at
Data Cases (all cases) filteri (all cases)
iltering) least w;)

Phase | 361 121 122 441 168
44-group

Phase V 767 162 81 802 50

Phase | 231 169 166 455 172
56-group

Phase V 1,338 240 101 819 110

Phase | 295 142 136 434 173
Overall

Phase V 1,020 199 87 1,167 88
* Standard deviations expressed in units of pcm.
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Standard Deviation of Bias Estimates

Covariance | Application TSURFER Whisper
D USLSTATS (cases with (cases with at
ata Cases o
filtering) least w))
Phase | 361 122 168
44-group
Phase V 767 81 50
Phase | 231 166 172
56-group
Phase V 1,338 101 110
Phase | 295 136 173
Overall
Phase V 1,020 87 88

* Standard deviations expressed in units of pcm.
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Standard Deviation of USL Estimates

. L TSURFER . Whisper
Covariance | Application USLSTATS TSURFER (cases with Whisper (cases with at
Data Cases (all cases) filteri (all cases)
iltering) least w;)
Phase | 1,423 115 119 481 115
44-group
Phase V 7,554 61 65 773 70
Phase | 522 140 137 504 117
56-group
Phase V 4,628 77 83 806 79
Phase | 1,088 140 145 485 120
Overall
Phase V 6,431 121 114 771 79
* Standard deviations expressed in units of pcm.
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Standard Deviation of USL Estimates

Covariance | Application TSURFER Whisper
Data Cases USLSTATS (cases with (cases with at
filtering) least w)
oo Phase | 1,423 119 115
-grou
IO Phasev | 7,554 65 70
E6-ar0 Phase | 522 137 117
-grou
Jrodp Phase V 4,628 83 79
overall Phase | 1,088 145 120
%
Phase V 6,431 114 79
* Standard deviations expressed in units of pcm.
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TSURFER Results - Takeaways:

« USLSTATS bias and USL estimates can vary significantly based on
the user’s input parameters and choice of benchmark experiments.

 The TSURFER and Whisper bias estimates exhibited the greatest
degree of consistency.

AK RIDGE
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Conclusions

« USLSTATS and TSURFER produced accurate bias estimates for cases with
known biases.

— USLSTATS trending analyses were found to be most effective when trending on c,.
— Setting a very high c, threshold CAN decrease the accuracy of USLSTATS.

— High uncertainty in the known bias reference cases makes it difficult to evaluate the
accuracy of the bias prediction methods.
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Estimating Computational Biases for Criticality Safety Applications with Few Neutronically Similar Benchmarks <NationallLaboratory



Conclusions

« USLSTATS and TSURFER produced accurate bias estimates for cases with
known biases.

— USLSTATS trending analyses were found to be most effective when trending on c,.
— Setting a very high c, threshold CAN decrease the accuracy of USLSTATS.

— High uncertainty in the known bias reference cases makes it difficult to evaluate the
accuracy of the bias prediction methods.

« TSURFER and Whisper produced consistent bias and USL estimates for cases
with unknown biases, but USLSTATS did not.

« The TSURFER USL estimates are generally less conservative than those from
USLSTATS or Whisper.

— TSURFER was designed for accurate prediction of bias, not conservative USL

estimates.
OAK RIDGE
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Conclusions

 The TSURFER USL estimates are generally less conservative than those from
USLSTATS or Whisper.

— TSURFER was designed for accurate prediction of bias, not conservative USL

estimates.
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