Ensuring the Fidelity of Data Assimilation Methodology Bias Estimates

...aka...

Tsurfer Tstudies

Dr. Christopher M. Perfetti Dr. Bradley T. Rearden Radiation Transport Group

Reactor and Nuclear Systems Division Oak Ridge National Laboratory lational Laboratory

1. Are any of the experiments outliers or erroneous?

- 2. Can the experiments be treated as independent data points? Are any of the experiments correlated?
- 3. Is the solution under-constrained? Are we using enough experiments?
- 4. Is the covariance data accurate, or at least "good enough" ?

5. How do we get a 95/95 confidence interval from these results?

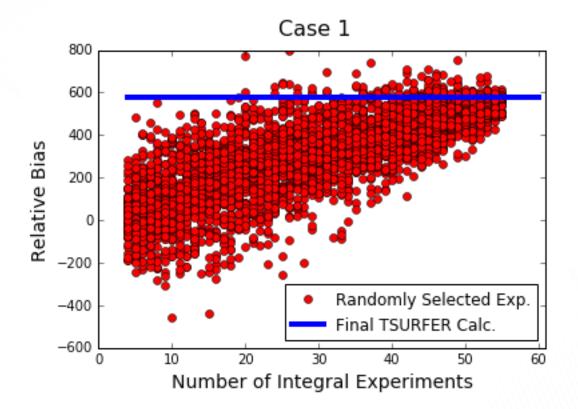
1. Are any of the experiments outliers or erroneous?

Delta Chi-squared filtering used to detect inconsistent experiments.

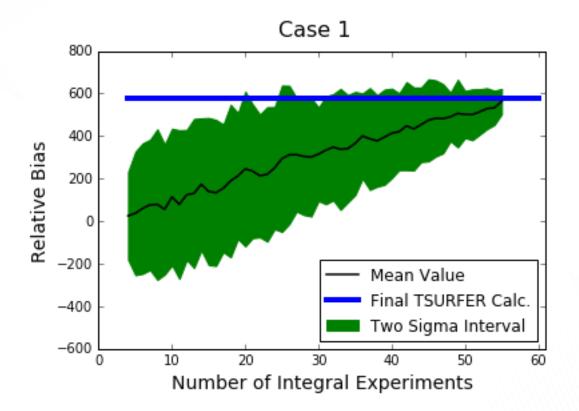
$$\Delta \chi_i^2 = \chi_{All \ Exp.}^2 - \chi_{Omit \ Exp.}^2$$

- 2. Can the experiments be treated as independent data points? Are any of the experiments correlated?
 - Only uncorrelated experiments were used in this study. SDFs were generated for a total of 56 experiments taken from:
 - 1. The ORNL Valid Library
 - 2. ICSBEP Sample Inputs
 - 3. The BFS Experiments [1]

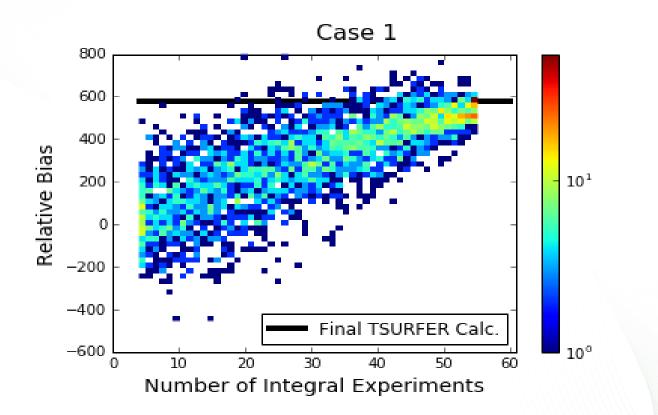
[1] E. Ivanov, "Approach and issues of covariance matrix establishment for systems with variable spectra," presented at GRS, Garching, Germany (2016).


3. Is the TSURFER solution under-constrained? Are we using enough experiments?

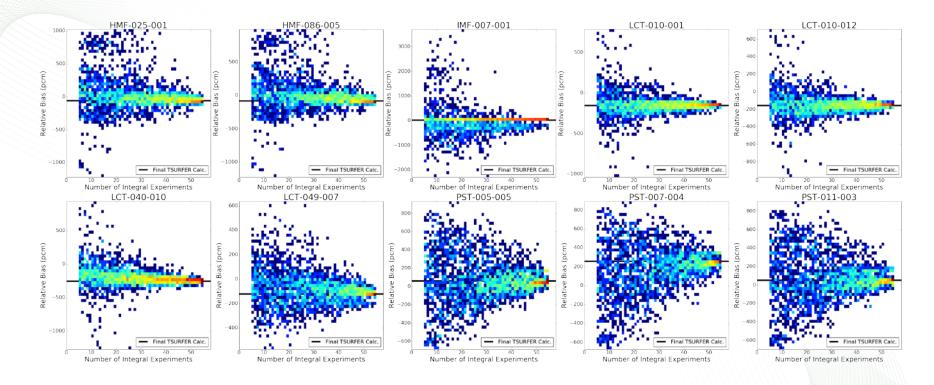
- 3. Is the TSURFER solution under-constrained? Are we using enough experiments?
 - Convergence was assessed by re-simulating the TSURFER calculation while randomly omitting experiments.
- The number of randomly omitted experiments was varied for the TSURFER simulation.
 - Convergence should be apparent as the number of randomly omitted experiments approaches zero.
 - 60 random realizations were simulated for each number of omitted experiments.



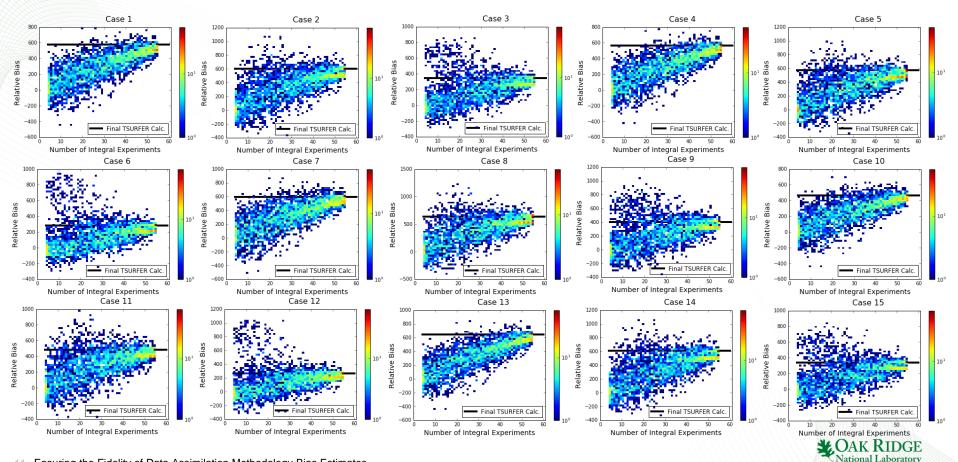
Results - 56-group Covariance, 56 Exp.



Results - 56-group Covariance, 56 Exp.

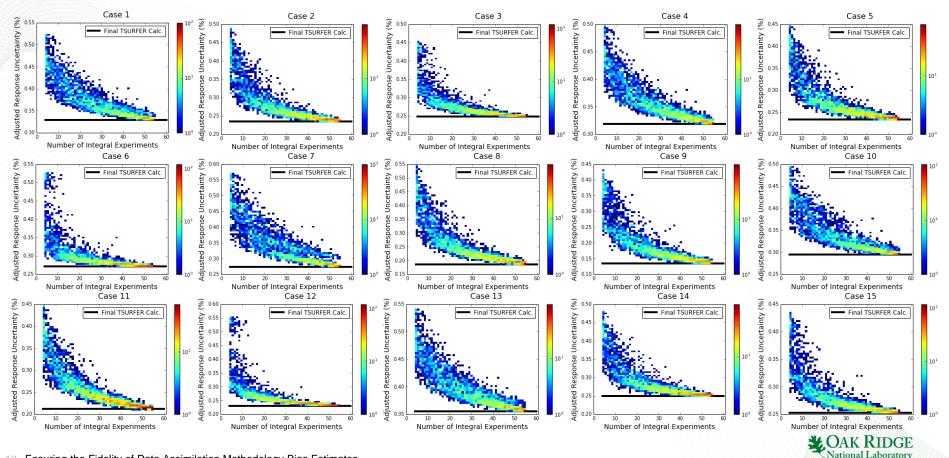


Results - 56-group Covariance, 56 Exp.



Known Bias Cases – 56-group Covariance, 56 Exp.

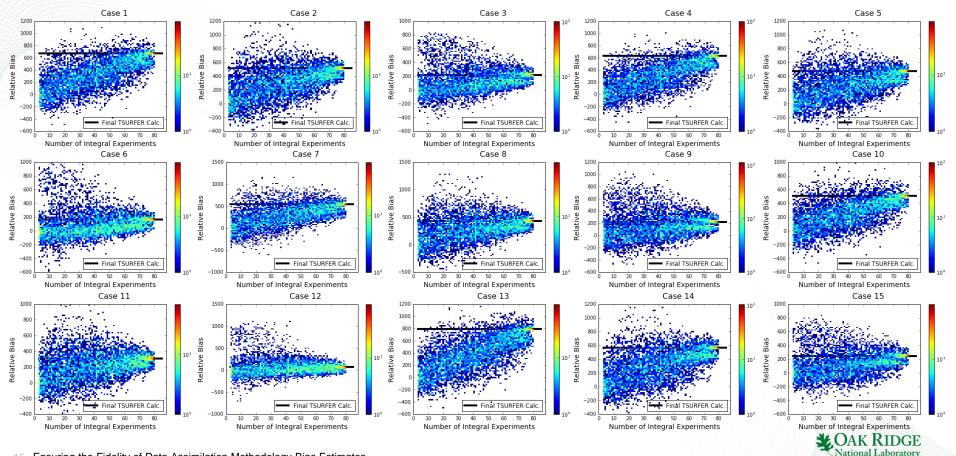
Unknown Bias Cases - 56-group Covariance, 56 Exp.



3. Is the TSURFER solution under-constrained? Are we using enough experiments? How else can we assess convergence?

- Examine the convergence of the data-induced uncertainty in the adjusted response.
- Add more experiments.

Response Uncertainty Convergence – 56-grp., 56 Exp.



3. Is the TSURFER solution under-constrained? Are we using enough experiments? How else can we assess convergence?

- Examine the convergence of the data-induced uncertainty in the adjusted response.
- Add more experiments.
- 25 additional (uncorrelated) experiments were modeled using sample inputs from the ICSBEP.
 - These inputs do not meet ORNL's VALID Library's rigorous QA standards.

Results - 56-group Covariance, 81 Exp.

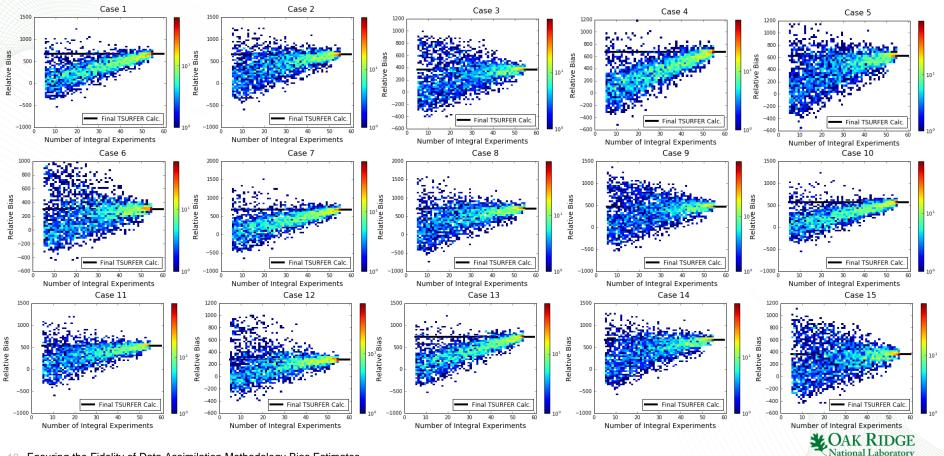
Is the TSURFER solution under-constrained?

- Some differences exist between the 56-experiment and 81-experiment TSURFER simulations.
- It's difficult to tell if the 81-experiment simulation is:
 - Converging to a better value because of its additional experiments; or
 - Converging to a worse value because of its lower fidelity models.
- TSURFER biases did not vary greatly with the addition of additional, lower fidelity experimental results.

Relative Biases

56-group covariance library

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15
56 Exp.	576	601	342	568	571	281	599	639	403	467	481	262	649	608	340
81 Exp.	676	516	218	630	472	167	539	429	223	509	309	70	794	568	246



4. Is the covariance data accurate, or at least "good enough" ?

Let's examine results using 44-group covariance data.

Results - 44-group Covariance, 56 Exp.

4. Is the covariance data accurate, or at least "good enough" ?

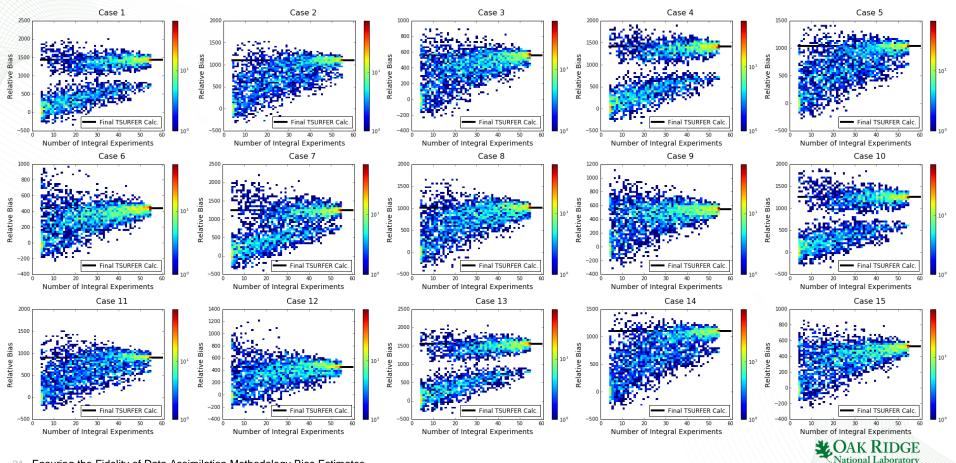
Let's examine results using 44-group covariance data.

Relative Biases

56-group covariance library 44-group covariance library

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15
56 Exp.	576	<mark>601</mark>	342	<mark>568</mark>	571	281	<mark>599</mark>	<mark>639</mark>	403	<mark>467</mark>	<mark>481</mark>	262	<mark>649</mark>	<mark>608</mark>	340
	664	651	366	673	625	301	674	703	469	564	529	274	737	662	364
81 Exp.	676	<mark>516</mark>	218	<mark>630</mark>	<mark>472</mark>	1 <mark>67</mark>	<mark>539</mark>	<mark>429</mark>	223	<mark>509</mark>	309	70	794	568	246
	678	645	412	696	641	387	662	636	453	525	443	239	788	700	454

Results from different covariance data libraries are generally consistent.



1. Are any of the experiments outliers or erroneous? (Part II)

Delta Chi-squared filtering used to detect inconsistent experiments.

Results – 56-group Cov., 56 Exp., No Chi² Filtering

1. Are any of the experiments outliers or erroneous? (Part II)

Delta Chi-squared filtering used to detect inconsistent experiments.

Relative Biases

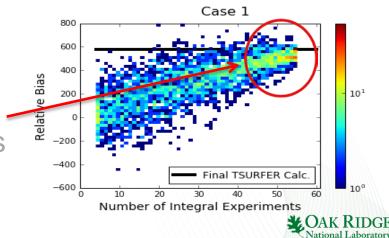
56-group covariance library 44-group covariance library

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15
56 Exp.	576	<mark>601</mark>	342	568	<mark>571</mark>	<mark>281</mark>	<mark>599</mark>	639	<mark>403</mark>	467	481	262	649	608	340
	664	651	366	673	625	301	674	703	469	564	529	274	737	662	364
81 Exp.	<mark>676</mark>	<mark>516</mark>	218	<mark>630</mark>	472	1 <mark>67</mark>	539	<mark>429</mark>	<mark>223</mark>	509	309	70	794	568	246
	678	645	412	696	641	387	662	636	453	525	443	239	788	700	454
No Exp.	1,433	1,102	559	1, <mark>412</mark>	1,035	439	1,246	1,011	<mark>543</mark>	1,253	<mark>896</mark>	452	1, <mark>548</mark>	1,099	526
Filtering	1,122	863	449	1,154	854	397	1,107	873	505	967	644	298	1,231	899	448

Inconsistent experiment filtering matters!!

- 5. How do we get a 95/95 confidence interval from these results?
 - Similar to the Whisper method, a margin of subcriticality can be defined:

 $MOS = MOS_{software} + MOS_{data} + MOS_{TSURFER}$

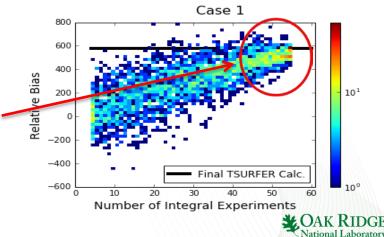


Estimating TSURFER Confidence Intervals

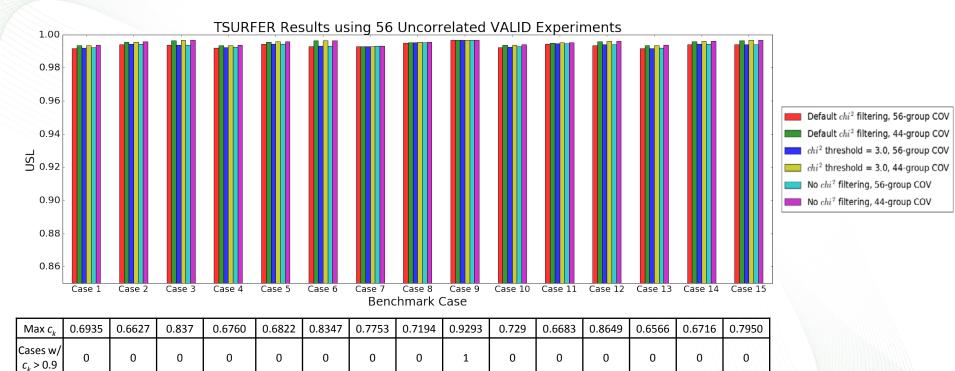
 To determine MOS_{data}, a 95/95 confidence interval is calculated for a normal distribution where:

> $\mu = \min(0, -TSURFER-predicted bias)$ $\sigma = The TSURFER-adjusted response uncertainty$

• The MOS_{TSURFER} is determined by evaluating a non-parametric 95/95 confidence interval around the randomly sampled TSURFER results as they converge to a bias estimate.



Estimating TSURFER Confidence Intervals


• To determine MOS_{data}, a 95/95 confidence interval is calculated for a normal distribution where:

 $\mu = \min(0, -TSURFER$ -predicted bias) $\sigma = The TSURFER$ -adjusted response uncertainty

 The MOS_{TSURFER} is determined by evaluating a non-parametric 95/95 confidence interval around the randomly sampled TSURFER results as they converge to a bias estimate.

USL Results: Unknown Bias Cases TSURFER Data Assimilation Analysis

Estimating TSURFER Confidence Intervals

- TSURFER USL estimates were significantly closer to 1.0 than all other USL estimates.
 - TSURFER also predicted a positive bias ($k_{calc} > k_{actual}$) for all application experiments.
- The 44-group covariance data calculations produced smaller MOS_{TSURFER} estimates because their bias convergence plots produced less noise.

Conclusions

- By randomly omitting different numbers of experiments, it was generally easy to see when TSURFER calculations failed to converge, or converged to a bad results.
- TSURFER bias estimates for the unknown bias cases could benefit from additional critical experiments.
- Filtering inconsistent experiments is important for trending analysis, data assimilation, and Whisper methods.
 - Note: the Whisper method also utilizes TSURFER post-adjustment uncertainties.

Conclusions

- By randomly omitting different numbers of experiments, it was generally easy to see when TSURFER calculations failed to converge, or converged to a bad results.
- TSURFER bias estimates for the unknown bias cases could benefit from additional critical experiments.
- Filtering inconsistent experiments is important for trending analysis, data assimilation, and Whisper methods.
 - Note: the Whisper method also utilizes TSURFER post-adjustment uncertainties.

Conclusions

- By randomly omitting different numbers of experiments, it was generally easy to see when TSURFER calculations failed to converge, or converged to a bad results.
- TSURFER bias estimates for the unknown bias cases could benefit from additional critical experiments.
- Filtering inconsistent experiments is important for trending analysis, data assimilation, and Whisper methods.
 - Note: the Whisper method also utilizes TSURFER post-adjustment uncertainties.

