Validation of KENO V.a and KENO-VI in SCALE 6.2.2 Using ENDF/B-VII.0 and ENDF/B-VII.1 Libraries

E. M. Saylor B. J. Marshall J. B. Clarity Z. J. Clifton B. T. Rearden

ANS Annual Meeting June 20, 2018 Philadelphia PA

ORNL is managed by UT-Battelle for the US Department of Energy

- Introduction
- Critical Experiments Used
- Results
- Conclusions

Introduction

- Validation effort demonstrates the general performance of the KENO V.a and KENO-VI codes across a wide range of systems
 - 15 experiment categories, > 600 individual cases
- Benchmarks are all from ICSBEP Handbook and included in the VALID library maintained at ORNL
- Models are executed using
 - 238-group and continuous energy libraries based on ENDF/B-VII.0
 - 56-group, 252-group, 200-group, and continuous energy libraries based on ENDF/B-VII.1
- Comparison of KENO V.a to KENO-VI using ENDF/B-VII.1 continuous energy library

Valid procedure and library contents

- <u>Verified</u>, <u>Archived</u> <u>Library of</u> <u>Inputs and</u> <u>Data</u> procedure is a SCALE project computational procedure at ORNL
- Quality behind VALID:
 - Independent preparation and review of models and documentation
 - Individuals must be certified as qualified for task assigned
 - Version control maintained on data
 - Data and documentation backed up and retrievable
- For more information on VALID, see NCSD 2013 presentation

Critical experiments used

 Cases in blue are new since 	Sequence	Experiment class	ICSBEP case numbers	Number of configurations
	LE 6.1 ation report s in red ew since 2015	HEU-MET-FAST	15, 16, 17, 18, 19, 20, 21, 25, 30, 38, 40, <mark>52</mark> , 65	19/23 ^a
 Cases in red 		HEU-SOL-THERM	1, 13, 14, 16, 28, 29, 30	52
		IEU-MET-FAST	2, 3, 4, 5, 6, 7, 8, 9	8/11 ^a
		LEU-COMP-THERM	1, 2, <mark>8</mark> , 10, 17, 42, 50, <mark>78, 80</mark>	140
		LEU-SOL-THERM	2, 3, 4	19
		MIX-MET-FAST	5, 6	2
are new since		MIX-COMP-THERM	1, 2, 4	21
		MIX-SOL-THERM	2,7	10
ICINC 2013		PU-MET-FAST	1, 2, 5, 6, 8, 10, 18, 22, 23, 24, <mark>25, 26</mark>	12
paper		PU-SOL-THERM	1, 2, 3, 4, 5, 6, 7, 11, 20	81
		U233-COMP-THERM	1	3
 561 cases with 		U233-MET-FAST	1, 2, 3, 4, 5, 6	10
KENO V.a		U233-SOL-INTER	1	29
		U233-SOL-MIXED	1, 2	8
		U233-SOL-THERM	1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 15, 16, 17	140
 57 cases with KENO-VI 	CSAS6/KENO-VI	HEU-MET-FAST	5, 8, 9, 10, 11, 13, 24, 80, 86, 92, 93, 94	27
		IEU-MET-FAST	19	2
		MIX-COMP-THERM	8	28

^aThe larger number includes simplified cases that are duplicate cases for which detailed models are also available in the library.

Results

- Average calculated-to-expected ratio (C/E) determined for each category of experiments
 - Uncertainty in C/E accounts for uncertainty in expected k_{eff} value and computational uncertainty
 - Experimental uncertainty >> computational uncertainty, dominates C/E uncertainty
- Results compared
 - Among ENDF/B-VII.1 libraries,
 - Between ENDF/B-VII.0 and respective ENDF/B-VII.1 libraries,
 - C/E with EALF, and
 - C/E with experimental and data uncertainty

Average C/E difference from unity (bias) – KENO V.a

 USI and USM results are consistently poor for all libraries (intermediate and mixed energy)

KENO V.a HST systems

- Comparing results for 56-group, 252group, 200-group, and continuous energy libraries based on ENDF/B-VII.1
- Outliers are from HST-014 and -016

KENO V.a HST systems

- Comparing results for ENDF/B-VII.0 libraries and related ENDF/B-VII.1 libraries
 - For more information, see Marshall's paper on Gadolinium bias from this morning's session

KENO V.a HST systems

- C/E values as a function of EALF
 - Only for ENDF/B-VII.1 252group and continuous energy libraries
- No clear evidence of trends

Average C/E difference from unity (bias) – KENO-VI

 Biases in KENO-VI appear to be generally slightly larger than in KENO V.a (not considering USI and USM systems)

 Result of more complex geometries?

KENO V.a and KENO-VI comparison

- Different biases for KENO V.a and KENO-VI for same experiment categories, but with different experiments
- All KENO V.a experiments converted to KENO-VI models using c5toc6 utility
- Only run/compared with ENDF/B-VII.1 continuous energy library
- Same model-to-model comparison
- 94.6% of cases are within 2 sigma
- Monte Carlo uncertainty ranges between ~0.00006 ~0.00049

Differences (KENO-VI – KENO V.a)

 Histogram of all individual case differences with overlay of an imposed normal distribution with the same mean and standard deviation

Conclusions

- Code bias for a wide range of systems is fairly small
 - Less than 2.2% when considering all of the cases in all of the categories
 - For KENO V.a, bias is less than 0.92% when removing the USI and USM systems from consideration and less than 0.5% for almost all of the categories
 - For KENO-VI, bias is less than 0.9%
- Data can be used to identify potential discrepancies which may indicate poor experiment descriptions, disagreements between multigroup and continuous energy libraries/treatments, and/or possible errors in cross section libraries – for example the energy range of the USI and USM systems
- Evidence that KENO V.a and KENO-VI calculate equivalent k_{eff} values for identical systems

Acknowledgment

 Sincere thanks to the US Nuclear Criticality Safety Program (NCSP) for sponsoring this work and its presentation.

