ANS Winter Meeting & Expo Joining Forces to Advance Nuclear

ENDF/B-VIII.0: the 8th major release of the ENDF/B library

D.A. Brown

ENDF/B-VIII.0 was released on 2 Feb. 2018 by the Cross Section Evaluation Working Group (CSEWG)

Integrates contributions for many sources

- Neutron Data Standards IAEA, NIST
- CIELO Pilot Project BNL led Fe, LANL led ¹⁶O and ²³⁹Pu, IAEA led ^{235,238}U
- Many new and improved neutron evaluations (DP, Crit. Safety, NE, USNDP)
- New thermal scattering libraries (Crit. Safety, Naval Reactors)
- Decay data USNDP (BNL)
- Charged particles USNDP (LLNL)
- New atomic data (LLNL)

NATIONAL LABORATORY

• Success rests on EXFOR & ENSDF libraries USNDP (BNL) compiles EXFOR reaction data for US & Canada USNDP develops the ENSDF library

Happy 50th Anniversary!*

* ENDF/B-I was released in June 1968

ENDF/B-VIII.0 is our best performing and highest quality library yet

- Validate by simulating well characterized systems
 - Thousands of critical assembly benchmarks
 - 14 MeV & ²⁵²Cf(sf) source transmission
 - Many other tests
- Quality also assured by
 - ADVANCE continuous integration system at BNL
 - Annual Hackathons

M.B. Chadwick et al, Nuclear Data Sheets 148, 189 (2018)

Library and evaluations detailed in Nuclear Data Sheets vol. 148 (2018)

- ENDF/B-VIII.0: D. Brown *et al.*, Nuclear Data Sheets 148, 1 (2018)
- Neutron Data Standards: A. Carlson *et al.*, Nuclear Data Sheets 148, 143 (2018)
- CIELO Overview: M.B. Chadwick, *et al.*, Nuclear Data Sheets 148, 189 (2018)
- CIELO Iron: M. Herman, *et al.*, Nuclear Data Sheets 148, 214 (2018)

- CIELO Uranium: R. Capote, et al., Nuclear Data Sheets 148, 254 (2018)
- PFNS evaluation: D. Neudecker, et al., Nuclear Data Sheets 148, 293 (2018)
- ²³⁹Pu(n,g) measurement: S. Mosby, et al., Nuclear Data Sheets 148, 312 (2018)
- ²³⁵U PFNS measurement: M. Devlin, et al., Nuclear Data Sheets 148, 322 (2018)

A Journal Devoted to Compilations and Evaluations of Experimental and Theoretical Results in Nuclear Physics E. A. McCutchan, Editor rel Nuclear Deter Center Beochemen Visional Laboratory Users, NY 11072-5000 J

National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA www.nndc.bnl.gov

> Special Issue on Nuclear Reaction Data

Special Issue Editor: Pavel Obložinský Special Issue Assistant Editor: Boris Pritychenko

Contents

Contents continued on the back cover page

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U and ²³⁹Pu
- Other potentially dramatic changes: New TSL evaluations for H2O and graphite
- Other big things that changed: ¹⁶O, ⁵⁶Fe

* ENDF/B-I was released in June 1968

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U and ²³⁹Pu
- Other potentially dramatic changes: New TSL evaluations for H2O and graphite
- Other big things that changed: ¹⁶O, ⁵⁶Fe

* ENDF/B-I was released in June 1968

There are many ways to "get the right answer"

- E. Bauge, et al. (CEA-DAM)
- Swap portions of one evaluation for other until completely swapped
- Elastic & inelastic scattering provided biggest swing

-					
BRC09 (CEA)	ENDF-VII.1				
$k_{eff} = 1.00082(11)$	$k_{eff} = 1.00060(12)$				
How does k _{eff} change when a BRC09 value					
is replaced by one from ENDF-VII.1?					
Quantity	$\Delta k_{eff} (1000^{\text{th's of \%}})$				
Fission	-138				
Capture	+269				
Elastic Scattering	-638				
Inelastic Scattering	+522				

The end result is a lack of confidence in modeling systems that significantly differ from the integral benchmark

Figure from L. Bernstein

Situation "unchanged" in VIII.0

Pu-239 CEA-CIELO to LANL-CIELO

FIG. 28. (Color online) Simulations of criticality k-eff for ²³⁹Pu for two critical assemblies: a fast assembly (Jezebel, PMF-1), and a thermal assembly (PST-4). This figure shows that both LANL CIELO-1 (ENDF/B-VIII.0) and CEA CIELO-2 (JEFF-3.3) predict similar k-eff values, but do so for very different reasons. The changes in criticality are evident when individual cross section channels are substituted between the two evaluations.

M. Chadwick *et al.*, Nuclear Data Sheets 418, 189 (2018)

M. Chadwick *et al.*, Nuclear Data Sheets 418, 189 (2018)

We focused on thermal & fast applications

FIG. 29. (Color online) The distribution of C/E, in units of the combined benchmark and statistical uncertainty. The normal distribution (in black) would be the perfect situation.

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U and ²³⁹Pu
- Other potentially dramatic changes: New TSL evaluations for H2O and graphite
- Other big things that changed: ¹⁶O, ⁵⁶Fe

* ENDF/B-I was released in June 1968

Large overlap in evaluations of Big 3

- Neutron Data Standards: (n,f) cross section
- **P(nu) for neutrons and gammas** (Talou)
- Fission energy release (Lestone)
- PFNS & associated cov. (Neudecker)
- PFGS new, resolves long standing problem with fission gammas (Stetcu)
- Feedback from benchmarks
- Main differences: treatments of RR & Fast parts of evaluation

Each major ENDF release is built off the newest release of the Neutron Data Standards

MANS

²⁵²Cf(sf) Prompt fission neutron spectra

Unrecognized systematic uncertainty estimated and included

TABLE IX. Unrecognized systematic uncertainties from the analyses of the (weighted) standard deviations of the distributions for cross sections and $\bar{\nu}_{tot}$ for 252 Cf(sf). The $\bar{\nu}_{tot}$ for 252 Cf(sf) unrecognized systematic uncertainty was determined to be 0.4 %. All thermal neutron-induced $\bar{\nu}_{tot}$ unrecognized systematic uncertainties are also assumed to be 0.4 %.

Cross section	Unrecognized systematic			
	uncertainty $(\%)$			
H(n,n) total	0.34			
6 Li(n,t)	0.5			
${}^{10}\mathrm{B}(\mathrm{n},\alpha_1\gamma)$	0.8			
$^{10}\mathrm{B(n,\alpha)}$	0.8			
C(n,n) total	0.65			
$Au(n,\gamma)$	1.7			
235 U(n,f)	1.2			
238 U(n,f)	1.2			
238 U(n, γ)	1.7 below 1 MeV			
238 U(n, γ)	2.4 for 1 MeV and above			
239 Pu(n,f)	1.2			

FIG. 14. (Color online) Comparison of the $^{238}\rm{U}(n,f)$ cross section from the 2017 evaluation with the 2006 standards evaluation. The unrecognized systematic uncertainty of 1.2 % has been included in the 2017 data. The baseline at 1.00 is the 2006 standards evaluation.

A. Carlson et al., Nuclear Data Sheets 418, 143 (2018)

Other cross sections adjusted to match fission

Scattering data carefully re-evaluated for ²³⁸U

- Dispersive OMP tuned to major actinides
- Proper treatment of (in)elastic mixing though E-W transform

FIG. 17. (Color online) Neutron-induced reaction cross sections on 238 U (top) and effect of the Engelbrecht-Weidenmüller transformation [179] on elastic and inelastic scattering on the first two excited levels of 238 U (bottom). Experimental data in the top panel have been taken from EXFOR [91].

- Proper compound angular distributions
- (n,n'g) data WAS NOT used

FIG. 18. (Color online) Calculated total and partial inelastic 238 U(n,n') cross sections on 45 keV level compared with experimental and evaluated data files. Experimental data have been taken from EXFOR [91].

	N	S
--	---	---

R. Capote *et al.*, Nuclear Data Sheets 418, 254 (2018)

Scattering data carefully reevaluated for ²³⁸U

Excellent performance in Pulsed Sphere test

FIG. 19. (Color online) Average cosine of neutron elastic scattering $\overline{\mu}$ on ²³⁸U (top). Angular distribution of neutron elastic scattering at 650 keV incident energy (bottom) on ²³⁸U. Experimental data have been taken from EXFOR [91].

R. Capote et al., Nuclear Data Sheets 418, 254 (2018)

- Resonance region
 - Adoption of WPEC SG-34 results up to 2.5 keV
 - New resonance parameters and nubar values
- Fast region: not a new full-blown evaluation!
 - Capture
 - Experimental data by Mosby et al. (DANCE, LANL)
 - Theoretical advances (Kawano)
 - Fission
 - Adoption of new IAEA standards result
 - Prompt Fission Neutron Spectrum
 - Chi-nu data (cf. Kelly's talk) still preliminary
 - New evaluation above 5 MeV incident neutron energy
 - Updated covariances

(n,γ) Cross Section

- New experimental results from DANCE measurement (Mosby et al.)
- New theoretical work (Kawano, CoH₃), including M1 "scissors" mode (also, Ullmann et al.)

Prompt Fission Neutron Spectrum

- Small tweak for thermal PFNS to improve modeling of Plutonium thermal solution benchmarks
- Unchanged from B-VII.1 from 0.5 to 5 MeV
- New evaluation (Neudecker et al.) above 5 MeV
- Preliminary chi-nu data (Kelly et al.)

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U and ²³⁹Pu
- Other potentially dramatic changes: New TSL evaluations for H2O and graphite
- Other big things that changed: ¹⁶O, ⁵⁶Fe

* ENDF/B-I was released in June 1968

Light water used in LWR, PWR, many solution assemblies

Light water re-evaluated by Centro Atomico Bariloche (Argentina)

FIG. 126. (Color online) Evaluated ${}^{1}\text{H}_{2}O(n, \text{tot})$ total cross section at different temperatures, compared with data measured by Stepanov *et al.* [339, 340] at 0.2266 meV.

- CAB Light water model
- Molecular diffusion using a modified Egelstaff-Schofield diffusion model.
- A continuous spectrum derived from molecular dynamics simulations
- Alpha and beta grids were refined

FIG. 125. (Color online) Evaluated ${}^{1}\text{H}_{2}\text{O}(n, \text{tot})$ total cross section at 293.6 K, compared with data retrieved from EXFOR and published by Zaitsev *et al.* [338].

Neptune Experiment Used for Validation of ENDF/B-VIII.0(β 5) H-H₂O TSL as a Function of Temperature

- Rolls-Royce conducted a series of critical experiments at the Neptune facility to validate the ability to predict criticality for water-isolated arrays as function of temperature [see Ref.].
- Configurations were neutronically similar to spent fuel storage racks without poison inserts in flux trap.
- Test was specifically designed to assess criticality safety issues for spent fuel rack configurations with water gaps.
- In this configuration, undermoderated fuel assemblies can have a positive temperature coefficient of reactivity.
- Water temperature varied from 20-60 °C

Schematic of Core and Detector Arrangement

FC = Fission Chamber SDA = ShutDown Amplifier Log = Log Channel PC = Pulse Channel WRL = Wide Range Linear RM = Reactivity Meter

Schematic of Fuel Arrangement Showing Increase in Effective Water Gap

Ref.: S. Walley et al., "Measurement of Positive Temperature Coefficients of Reactivity for Rack-like Arrangements of Reactor Fuel in the Neptune Zero Energy Facility," Proc. RRFM-2016, Berlin, March 13-17, 2016.

BRUU

MC21 Calculated k_{eff} for Neptune Configuration C as a Function of Temperature Using ENDF/B-VII.1 Non-Moderator Libraries and Various H-H₂O TSL Libraries

TREAT reactor@INL restarted Nov 14, 2017: need graphite

- Graphite moderated
- Materials testing
- Shut down in 1994
- After Fukushima, interest in restarting

TREAT Reactor (wikimedia commons)

Graphite

consists of planes (sheets) of carbon atoms arranged in a hexagonal lattice. Covalent bonding exits between intraplaner atoms, while the interplaner bonding is of the weak Van der Waals type. The planes are stacked in an "abab" sequence.

Reactor graphite consists of ideal graphite crystallites (randomly oriented) in a carbon binder. It is highly porous structure with porosity level ranging between 10% and 30%.

Nuclear Graphite (SEM at NCSU) Density = 1.5 – 1.8 g/cm³

BROOKHAVEN

NATIONAL LABORATORY

Calculation curtesy of S. Van der Marck

J.D. Bess, et al. NEA/NSC/DOC(2006)1

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U and ²³⁹Pu
- Other potentially dramatic changes: New TSL evaluations for H2O and graphite
- Other big things that changed: ¹⁶O, ⁵⁶Fe

* ENDF/B-I was released in June 1968

¹⁶O is product of R-matrix evaluation from LANL for CIELO

Must consider all channels that connect to ¹⁷O compound nucleus

D. Brown et al., Nuclear Data Sheets 418, 1 (2018)

Consideration of ${}^{16}O(n, \alpha)$ requires consideration of ${}^{13}C(\alpha, n)$ and therefore C standards

6%	р	р	р	EC	EC	100	β·	β·
) eV	013 8,58 ms	014 70,606 s	O15	O16	017	O18	019 26.91 s	O20
	(3/2-)	0+	1/2-	//	- 2/2+	0+	5/2+	0+
	ЕСр	EC	EC	1/9.762	0.038	0.200	β-	β-
	N12	N13	N14	N15	N16	N17	N18	N19
2 8 02	11.000 ms	9.965 m 1/2-	1+	1/2-	2-	4.175 \$	024 ms 1-	(1/2-)
	ΕС3α	EC	99.634	0.366	β-α	β- n	β· n, β·α,	β - π
	C11	C12	C13	C14	C15	C16	C17	C18
s	3/2-	0+		5/30 y 0+	2.449 s 1/2+	0.747 s 0+	195 ms	95 m
	EC	98.90	1.10	B -	β-	βn	β [.] n	β∙п
	B10	B11	B12	B13	B14	B15	B16	B17
: V	3+	3/2-	20.20 ms 1+	3/2-	2-	10.5 ms	(0-)	(3/2-)
	19.9	80.1	β-3α	β∙п	β-	β-	n	βn
7	Be9	Be10 1.51E+6 v	Be11 13.81 s	Be12 23.6 ms	Be13 0.9 MeV	Be14 4.35 ms		1 /

C

Elastic cross section for natural Carbon is a

New ⁵⁶Fe evaluation really aimed at improving steel

- ⁵⁶Fe (CIELO)
- ^{54,57,58}Fe
- ⁵⁹Co
- 58-62,64**N**i
- ^{12,13}C (Neutron Data Standards)

Resonances in ⁵⁶Fe go back to Froehner

- Minor correction to the previous evaluations
- Fluctuations extend high in energy

Fitted EMPIRE calculation to all available experiments

- » Generate energy dependent covariance data on cross sections
- » Angular distributions not done yet
- » Allowed us to match well known dosimetry reactions

M. Herman et al., CIELO meeting, AEA, Vienna -Dec 16-22, 2017

Elastic & inelastic for ⁵⁶Fe

Fluctuations imposed on inelastic scattering to the first and second excited states taken from experimental data

Elastic obtained by subtracting the sum of all reactions from the total

Elastic angular distributions

Validation in critical assemblies

, CIELO meeting, ac 16-22, 2017

M. Herman et al., CIELO | AEA, Vienna -Dec 16-22,

Validation - better results in some transmission experiments

BRO

NATION

...but worse in some others

BR NATI

Main messages

ENDF/B-VII.1 was very good

- k_{eff}=1 is "baked in", which surprisingly is a problem for many customers
- k_{eff}=1 but with really big uncertainty does mean we biased the mean somehow, but were conservative with our uncertainty estimates
- But... ENDF/B-VIII.0 is much better
- There is still a lot of room for improvement
- Files available at <u>http://www.nndc.bnl.gov/endf/b8.0/download.html</u>

Happy 50 ± 1 Anniversary!*

* CSEWG formed in 1966 ENDF/B-I released in 1968

