

Thermal Neutron Scattering Law (TSL) Data In ENDF/B-VIII

Ayman I. Hawari

Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

American Nuclear Society Winter Meeting

November 11 - 15, 2018 • Orlando, Florida, USA

Thermal Scattering Law Analysis

- Key development in the last 20 years is the use of atomistic simulations methods to support the evaluation process
 - Produce data necessary to calculate the TSL including
 DOS for evaluation of TSL
 - Direct access to TSL using correlation analysis

Thermal Scattering Law Analysis

Ayman I. Hawari et al, "Ab Initio Generation of Thermal Neutron Scattering Cross Sections," Proceedings of the PHYSOR conference, Chicago, IL, 2004. (Invited)

PHYSOR 2004 -The Physics of Fast Cycles and Advanced Nuclear Systems: Global Development: Chicago, Illinois, April 25-29, 2004, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (2004)

Ab Initio Generation of Thermal Neutron Scattering Cross Sections

A. I. Hawari, I. I. Al-Qasir, V. H. Gillette, B. W. Wehring, T. Zhou Department of Nuclear Engineering, P.O. Box 7909, North Carolina State University, Roleigh, NC 27695-7909

Quantum mechanical ab mino (i.e., first principle) methods are applied in generating the thread neutron scattering cross sections of modernitors and reflectors that are of interest in miclear technology. Specifically, this work focuses on graphical and beryllism. In both cases, the ab minito code VASP and the lattice dynamics code PHDNON were used to generate the dispersion relations, and the phonon frequency distributions (density of states). This information was then utilized in the LEAPR modulo of the NOV code to calculate the thermal mention scattering cross sections at variant lengerstitutes. The use of the ab mino approach represents a major fitting simple dynamical models to experimentel data to array at the phonon frequency distributions. In this case, much more complicated models of the attrine vostem of interest can be set us, which allows the Quantum mechanical ab initio (i.e., first principle) methods are applied in phonon trequency distributions. In this case, much more complexed models of the atomic system of interest can be set up, which allows the establishment of a more complete dynamical matrix. As opposed to the semie-maprical methods used previously, this method represent fundamental and predictive approach for estimating materials properties including enset that are of interest machear reactor design.

KEYWORDS: neutron, thermal neutron, slow neutron, ab initio, VASP, graphite, beryllium, moderator, phonon frequency distribution, thermal neutron scattering cross section, nuclear reactor

1. Introduction

Due to advances in comparison power, the possibility now exists to perform detailed quantum mechanical abuit (i.e., for principal) simulations of dominary storms. These simulations are currently used in fields such as physics, chemisity, and materials science to characterize and predict the bibaryies of new and exects mention [11]. Using this propriod, it is possible to subbib the equilibrium atomic positions of a given material and predict the various properties of the internal starting from such base indimension in the contains of the actual. Consequently, abuit simulation science that the top of the starting from such base indimension in the contains of the actual variable starting from such abuits of the contains of the actual base indimension in the contains of the actual contains of the actual base indimension in the contains (which are used) variables in the lensing fromes similarity of the simulation science (see the starting that the starting that the starting the starting the starting the starting that the starting the starting that the starting the starting that the starting the starting the starting that the startin Due to advances in computational power, the possibility now exists to perform detailed quantum

In the past, the thermal neutron scattering cross sections were derived from structure dynamics models In the past, the memory mention scattering close sections were entried and a structure optimises indexes that were first to experimental data in creder to quantify the forces between the atoms and calculate the required excitation density of states [2]. However, by using the ab initio approach, the ability now exists to treat much larger systems of atoms, and arrive at more securities and complete dynamical models from

Ayman I. Hawari, "Modern Techniques for Inelastic Thermal Neutron Scattering Analysis," Nuclear Data Sheets, vol. 118, 172, 2014.

Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

A.I. Hawari1.* ¹Department of Nuclear Engineering, North Cardina State University, Baleigh, NC 27695, 2090, USA

A preferitve approach hard on ab initis quartum mechanics and/or donied indexide dynamics simulations has been formulated to includus: the scattering $[m_{s}, n_{s}^{*}(m_{s}^{*})]$, and the thread methanic strateging consensations of materials, in particularly these strateging tensors includes must be possible strateging consensations of materials. In particular, the scattering these strateging tensors in the scattering tensors in the scattering tensors in the scattering tensor in the scattering tensor in the scattering tensors in the scattering experiment in the scattering tensors in the scattering particular scattering tensors and the moders of the scattering tensors in the scatter

<text><equation-block><equation-block><equation-block><equation-block><text><text><text>

 $\frac{d^2\sigma}{d\Omega dE} = \frac{1}{4\pi} \frac{k'}{k} [\sigma_{coh} + \sigma_{mech}] S_s(\vec{\kappa}, \omega). \quad (3)$ However, for some important neutronic materials such as graphite and beryllium, this assumption can introduce * Commonding author: some herarificant adu

2000 - Present

Thermal Scattering Law Analysis

Ayman I. Hawari et al, "Ab Initio Generation of Thermal Neutron Scattering Cross Sections," Proceedings of the PHYSOR conference, Chicago, IL, 2004. (Invited)

PHYSOR 2004 -The Physics of Fael Cycles and Advanced Nuclear Systems: Global Development: Chicogo, Illinois, April 25-29, 2004. on CD-ROM, American Nuclear Society, Lagrange Park, IL. (2004)

Ab Initio Generation of Thermal Neutron Scattering Cross Sections

A. I. Hawari, I. I. Al-Qasir, V. H. Gillette, B. W. Wehring, T. Zhou Department of Nuclear Engineering, P.O. Box 7909, North Carolina State University, Raleigh, NC 27695-7909

Quantum mechanical ab mino (i.e., first principle) methods are applied in generating the thremal neutron scattering cross sections of moderators and reflectors that are of interest in mechaet technology. Specifically, this work focuses on graphical moderations. In both cases, the ab minoi code VASP and the lattice dynamics code PEDNON were used to generate the dispersion relations, and the phonon frequency distributions (density of states). This information was then utilized in the LEAPR module of the NOV code to collaridate the dhermal neutron scientering cross sections at various temperatures. The use of the ab mino approach represents a major fitting simple dynamical models to experiment data to mirive at the phonon frequency distributions. In this case, much more complicated models of the attemic system of interest can be seen. Quantum mechanical ab initio (i.e., first principle) methods are applied in phonon frequency distributions. In this case, mucn more compositors models of the attain system of interest can be set up, which allows the establishment of a more complete dynamical matrix. As opposed to the semie-majnical methods used previously, this method represents a fundamental and predictive approach for estimating materials properties including ones that are of interest nuclear reactor design.

KEYWORDS: neutron, thermal neutron, slow neutron, ab initio, VASP, graphite, beryllium, moderator, phonon frequency distribution, thermal neutron scattering cross section, nuclear reactor

1. Introduction

Due to advances in comparison power, the possibility now exists to perform detailed quantum mechanical abuit (i.e., for principal) simulations of dominary storms. These simulations are currently used in fields such as physics, chemisity, and materials science to characterize and predict the bibaryies of new and exects mention [11]. Using this propriod, it is possible to subbib the equilibrium atomic positions of a given material and predict the various properties of the internal starting from such base indimension in the contains of the actual. Consequently, abuit simulation science that the top of the starting from such base indimension in the contains of the actual variable starting from such abuits of the contains of the actual base indimension in the contains of the actual contains of the actual base indimension in the contains (which are used) variables in the lensing fromes similarity of the simulation science (see the starting that the starting that the starting the starting the starting the starting that the starting the starting that the starting the starting that the starting the starting the starting that the startin Due to advances in computational power, the possibility now exists to perform detailed quantum

In the past, the thermal neutron scattering cross sections were derived from structure dynamics models In the post, the thermal methods assuming cross sections were universe includes structure optimizes includes that were first to experimental data in creder to quarity the forces between the atoms and calculate the expuried excitation density of states [2]. However, by using the ab initio approach, the ability now exists to treat nauch larger systems of atoms, and arrive at more accurate and complete dynamical models from Ayman I. Hawari, "Modern Techniques for Inelastic Thermal Neutron Scattering Analysis," Nuclear Data Sheets, vol. 118, 172, 2014.

Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

A.I. Hawari1.* ¹Department of Nuclear Engineering, North Canding State University, Raleigh, NC 27695, 7090, USA

A predictive approach based on ab initio-quantum mechanics and by chanted molecular dynamics instantians has been transfitted to adducing the quartering law, $|{\bf q}'|_{\rm res} > 0$, and the formation based molecular dynamics proceeds the initiation of the structure of the stru

1. INTRODUCTION Les energy or "hermal" mentans are thematismic production of the statistical p

samplet through cottening interactions between the vy-trans a sum of the basis and the sources. It is a sum of the source of t

 $\frac{d^{2}\sigma}{d\Omega dE} = \frac{1}{4\pi} \frac{k'}{k} \left[\sigma_{coh} + \sigma_{mech}\right] S_{s}\left(\vec{\kappa}, \omega\right). \quad (3)$

However, for some important neutronic materials such as graphite and heryllium, this assumption can introduce

* Commending author: symmetherarillingat adu

D. A. Brown et al, "ENDF/B-VIII.0: The 8th Major Library Release of Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards, and Thermal Scattering Data" Nuclear Data Sheets, vol. 148, 1, 2018.

2000 - Present

ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data

WHI CLEDO-PHYLCE CASES SECTIONS. NEW STRIMMENT MITTERIM STRICTING DATA DA Rosen, M. B. Chodvick, Y. R. Opoch, A. C. Kahler, A. Tubor, M. W. Herman, J. A. Sanogel, Y. Dano, J. D. Carlon, M. Dunné, D. L. Smith, C. M. Had, G. Arbanas, R. Acrilla, C. R. Bates, B. Bleck, P. Bober, P. F. Borow, R. J. Copport, J. C. Min, D. E. Culkey, M. A. Daschell, P. Fristenson, T. Gainso, W. K. R. Gaber, P. J. Hornov, R. J. Copport, J. J. Charlow, T. Kamano, B. C. Kichrowidi, Y. J. Koning, S. Kopely, M. L. Gult, P. J. Hatome, V. T. D. Jahnson, T. Kamano, B. C. Kichrowidi, Y. J. Koning, S. Kopely, M. L. Gult, P. J. Matomer, D. Kamano, B. C. Kichrowidi, Y. J. Koning, S. Simokov, B. M. Sharkov, T. K. McCharl, S. Muthadhal, Y. Nersell, P. Kamano, S. Shankov, Z. M. McCharla, S. Muthadhal, Y. Nersell, P. Barlow, S. W. Donham, P. P. Banama, P. Schildowick, S. Sanikav, B. Mis, B. Simokov, T. B. Sanikav, Y. M. Soni, C. Kanow, T. S. Matowa, T. S. Matowa, Y. M. Matowa, Y. M. Matowa, Y. L. Matowa, T. L. Matowa, J. K. Matowa, Y. L. Matowa, T. S. Matowa, Y. S. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. S. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. M. Matowa, Y. S. Matowa, Y. S. Matowa, Y. Matowa, Y. Matowa, Y. Matowa, Y. M. Matowa, Y. M. Matowa, Y. M. Matowa, Y. Matowa, Y. S. Matowa, Y. S. Matowa, Y. Katawa, Y. Matowa, Y. Mat

 Brahney T. K. Shouloud, Y. Shoulou, E. K. S. Sankhoritzki, W. B. Storten, P. Takor, E. Thompson, * 8 van der M. Sterscherff, D. D. Ward, M. W. R. O'L, W. Wanal, M. H. G. Wirk, M. Zacka, Y. C. Scrennk, * and * and standard characterize, *Eastron, Virth M. Market, Y. L. Scrennk, * and * and the standard standards, Eastron, Virth M. J. Sterscher, Y. Standard, * C. Sternske, * and * and * and * and the standard standards, <i>Eastron, Virth, M. J. Sterscher, Y. Sterscher, * and Sterscher, K. Sternske, * and * a* (Hotovel 18 Specialize 2017, revised networks) The Somular 2017, asception 14 Beromsker 2017, We develope the network 2019, revised networks and the second networks and the second network 2019, revised networks and a second network 2019, revised networks and a second network 2019, revised networks and a second network 2019, revised networks and revised networks an

Attp://doi.org/10.1016/j.ads/art.soc.om/ 0090/3722/C-2018 Published by Elsevier Int. 0090/3722/C-2018 Published by Elsevier Int. 0090/3722/C-2018 Published by Elsevier Int.

Neutron Thermalization

Using first Born approximation combined with Fermi pseudopotential, it can be shown that the double differential scattering cross section has the form

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{1}{4\pi} \sqrt{\frac{E'}{E}} \left\{ \sigma_{coh} S(\vec{\kappa}, \omega) + \sigma_{incoh} S_s(\vec{\kappa}, \omega) \right\}$$

The scattering law $S(\vec{k}, \omega)$ is composed of two parts

$$S(\vec{\kappa},\omega) = S_s(\vec{\kappa},\omega) + S_d(\vec{\kappa},\omega)$$

Van Hove's space-time formulation

$$I(\vec{\kappa},t) = \int G(\vec{r},t) \exp(i\vec{\kappa}\cdot\vec{r}) d\vec{r}$$
$$S(\vec{\kappa},\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\vec{r},t) e^{i(\vec{\kappa}\cdot\vec{r}-\omega t)} d\vec{r} dt$$

where $G(\vec{r},t)$ is the *dynamic pair correlation function* and can be expressed in terms of time dependent atomic positions.

$$S_{s}(\alpha,\beta) = k_{B}T \cdot S_{s}(\vec{\kappa},\omega)$$

$$\frac{d^{2}\sigma}{d\Omega dE'}\Big|_{inelastic} = \frac{\sigma}{2k_{B}T}\sqrt{\frac{E'}{E}}S_{s}(\alpha,\beta)$$
Since 1960s
GASKET
NJOY/LEAPR

$$\beta = \frac{E - E'}{k_B T}$$
 Energy transfer $\alpha = \frac{(E + E' - 2\sqrt{EE'}\cos\theta)}{k_B T}$ Momentum transfer

The scattering law (TSL) is the Fourier transform of a Gaussian correlation function – **INCOHERENT APPROXIMATION**

$$S_{s}(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\beta t} e^{-\gamma(t)} dt$$

$$\gamma(t) = \frac{\alpha}{2} \int_{-\infty}^{\infty} \frac{\rho(\beta)}{\beta \sinh(\beta/2)} \left[1 - e^{-i\beta t} \right] e^{\beta/2} d\beta$$

 $\rho(\beta)$ – density of states (e.g., phonon frequency distribution)

Evaluation Approach

- Construct atomistic model of a material
- Verify ability of model to reproduce physical properties of the material (equilibrium conditions)
 - Density, thermal expansion, thermal conductivity,...
 - Ergodic behavior, correlations,...
- □ Generate input (DOS, ...) for TSL calculations
- Calculate TSL and produce thermal scattering cross sections
 - Check consistency of results with computational assumptions/models
 - Compare to experimental data

Thermal Scattering Cross-Sections Evaluation DFT/LD

Thermal Scattering Cross-Sections Evaluation MD/QM

ENDF/B-VIII TSL Evaluations

Material	ENDF Library Name	Evaluation Basis	Institution	
Boryllium motal	tel Bo motal andf		NCSU	
Beryllium avida (haryllium)	tel ReinReQ andf		NCSU	
Beryllium oxide (beryllium)	tsi-DelliDeO.eliui		NCSU	
Beryllium oxide (oxygen)	tsi-OinBeO.endf	DF1/LD	NCSU	
Light water (hydrogen)	tsI-HinH2O.endf	MD	CAB	
Light water ice (hydrogen)	tsl-HinIceIh.endf	DFT/LD	BAPL	
Light water ice (oxygen)	tsl-OinIceIh.endf	DFT/LD	BAPL	
Heavy water (deuterium)	tsl-DinD20.endf	MD	CAB	
Heavy water (oxygen)	tsl-OinD2O.endf	MD	CAB	
Polymethyl Methacrylate (Lucite)	tsl-HinC5O2H8.endf	MD	NCSU	
Polyethylene	tsl-HinCH2.endf	MD	NCSU	
Crystalline graphite	tsl-graphite.endf	MD	NCSU	
Reactor graphite	tsl-reactor-graphite-	MD	NCSU	
(10% porosity)	10P.endf			
Reactor graphite	tsl-reactor-graphite-	MD	NCSU	
(30% porosity)	30P.endf			
Silicon carbide (silicon)	tsl-CinSiC.endf	DFT/LD	NCSU	
Silicon carbide (carbon)	tsl-SiinSiC.endf	DFT/LD	NCSU	
Silicon dioxide (alpha phase)	tsl-SiO2-alpha.endf	DFT/LD	NCSU	
Silicon dioxide (beta phase)	tsl-SiO2-beta.endf	DFT/LD	NCSU	
Yttrium hydride (hydrogen)	tsl-HinYH2.endf	DFT/LD	BAPL	
Yttrium hydride (yttrium)	tsl-YinYH2.endf	DFT/LD	BAPL	
Uranium dioxide (oxygen)	tsl-OinUO2.endf	DFT/LD	NCSU	
Uranium dioxide (uranium)	tsl-UinUO2.endf	DFT/LD	NCSU	
Uranium nitride (nitrogen)	tsl-NinUN.endf	DFT/LD	NCSU	
Uranium nitride (uranium)	tsl-UinUN.endf	DFT/LD	NCSU	

ENDF/B-VIII TSL Evaluations

Material	ENDF Library Name	Evaluation Basis	Institution	
Boryllium motal	tsl-Bo-motal ondf		NCSU	
Beryllium oxide (beryllium)	tel RoinRoQ andf		NCSU	
Beryllium oxide (beryllium)	tel OinBoO andf		NCSU	
Light water (bydrogon)	tel HinH2O andf			
Light water (liydrogen)	tel Hiples Ib andf			
Light water ice (nyurogen)			DAPL	
Light water ice (oxygen)	tsi-Oinicein.endf	DF1/LD	BAPL	
Heavy water (deuterium)	tsi-DinD20.endf	MD	CAB	
Heavy water (oxygen)	tsi-OinD2O.endf	MD	САВ	
Polymethyl Methacrylate	tsl-HinC5O2H8.endf	MD	NCSU	
(Lucite)			NICOLI	
Polyethylene	tsI-HinCH2.endf	MD	NCSU	
Crystalline graphite	tsl-graphite.endf	MD	NCSU	
Reactor graphite	tsl-reactor-graphite-	MD	NCSU	
(10% porosity)	10P.endf			
Reactor graphite	tsl-reactor-graphite-	MD	NCSU	
(30% porosity)	30P.endf			
Silicon carbide (silicon)	tsl-CinSiC.endf	DFT/LD	NCSU	
Silicon carbide (carbon)	tsl-SiinSiC.endf	DFT/LD	NCSU	
Silicon dioxide (alpha phase)	tsl-SiO2-alpha.endf	DFT/LD	NCSU	
Silicon dioxide (beta phase)	tsl-SiO2-beta.endf	DFT/LD	NCSU	
Yttrium hydride (hydrogen)	tsl-HinYH2.endf	DFT/LD	BAPL	
Yttrium hydride (yttrium)	tsl-YinYH2.endf	DFT/LD	BAPL	
Uranium dioxide (oxygen)	tsl-OinUO2.endf	DFT/LD	NCSU	
Uranium dioxide (uranium)	tsl-UinUO2.endf	DFT/LD	NCSU	
Uranium nitride (nitrogen)	tsl-NinUN.endf	DFT/LD	NCSU	
Uranium nitride (uranium)	tsl-UinUN.endf	DFT/LD	NCSU	

ENDF/B-VIII TSL Evaluations

Material	ENDF Library Name	Evaluation Basis	Institution	
Beryllium metal	tsl-Be-metal.endf	DFT/LD	NCSU	
Beryllium oxide (beryllium)	tsl-BeinBeO.endf	DFT/LD	NCSU	
Beryllium oxide (oxygen)	tsl-OinBeO.endf	DFT/LD	NCSU	
Light water (hydrogen)	tsl-HinH2O.endf	MD	CAB	
Light water ice (hydrogen)	tsl-HinIceIh.endf	DFT/LD	BAPL	
Light water ice (oxygen)	tsl-OinIceIh.endf	DFT/LD	BAPL	
Heavy water (deuterium)	tsl-DinD2O.endf	MD	CAB	
Heavy water (oxygen)	tsl-OinD2O.endf	MD	CAB	
Polymethyl Methacrylate (Lucite)	tsl-HinC5O2H8.endf MD		NCSU	
Polyethylene	tsl-HinCH2.endf	MD	NCSU	
Crystalline graphite	tsl-graphite.endf	MD	NCSU	
Reactor graphite (10% porosity)	tsl-reactor-graphite- 10P.endf	MD	NCSU	
Reactor graphite (30% porosity)	tsl-reactor-graphite- 30P.endf	MD	NCSU	
Silicon carbide (silicon)	tsl-CinSiC.endf	DFT/LD	NCSU	
Silicon carbide (carbon)	tsl-SiinSiC.endf	DFT/LD	NCSU	
Silicon dioxide (alpha phase)	tsl-SiO2-alpha.endf	DFT/LD	NCSU	
Silicon dioxide (beta phase)	tsl-SiO2-beta.endf	DFT/LD	NCSU	
Yttrium hydride (hydrogen)	tsl-HinYH2.endf DFT/LD		BAPL	
Yttrium hydride (yttrium)	tsl-YinYH2.endf	DFT/LD	BAPL	
Uranium dioxide (oxygen)	tsl-OinUO2.endf	DFT/LD	NCSU	
Uranium dioxide (uranium)	tsl-UinUO2.endf	DFT/LD	NCSU	
Uranium nitride (nitrogen)	tsl-NinUN.endf	DFT/LD	NCSU	
Uranium nitride (uranium)	tsl-UinUN.endf	DFT/LD	NCSU	

Graphite

Ideal "crystalline" graphite

consists of planes (sheets) of carbon atoms arranged in a hexagonal lattice. Covalent bonding exits between intraplaner atoms, while the interplaner bonding is of the weak Van der Waals type. The planes are stacked in an "abab" sequence.

- Hexagonal Structure
- 4 atoms per unit cell
- a = b = 2.46 Å
- c = 6.7 Å
- Density = 2.25 g/cm³

Reactor/Nuclear graphite

consists of ideal graphite crystallites (randomly oriented) in a carbon binder. It is highly porous structure with porosity level ranging between 10% and 30%.

Nuclear Graphite (SEM at NCSU) Density = 1.5 – 1.8 g/cm³

Reactor/Nuclear Graphite

Evaluation

Measurements/Benchmarks

Light Water (H in H2O)

ENDF/B-VIII evaluation used MD techniques to generate the temperature dependent DOS

Benchmark studies continue!

Neutron Thermalization

Using first Born approximation combined with Fermi pseudopotential, it can be shown that the double differential scattering cross section has the form

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{1}{4\pi} \sqrt{\frac{E'}{E}} \left\{ \sigma_{coh} S(\vec{\kappa}, \omega) + \sigma_{incoh} S_s(\vec{\kappa}, \omega) \right\}$$

The scattering law $S(\vec{\kappa}, \omega)$ is composed of two parts

$$S(\vec{\kappa},\omega) = S_s(\vec{\kappa},\omega) + S_d(\vec{\kappa},\omega)$$

Van Hove's space-time formulation

$$I(\vec{\kappa},t) = \int G(\vec{r},t) \exp(i\vec{\kappa}\cdot\vec{r}) d\vec{r}$$
$$S(\vec{\kappa},\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\vec{r},t) e^{i(\vec{\kappa}\cdot\vec{r}-\omega t)} d\vec{r} dt$$

21st Century

where $G(\vec{r},t)$ is the *dynamic pair correlation function* and can be expressed in terms of time dependent atomic positions.

FLASSH Code

and the second s					ł	~	
Options				One Phonon Configuration			
Elastic Output	Cohere	nt Elastic (DBW Matrix)		One Phonon Correction	Do not Apply		
a, β Grid	Automa	itic	1.5	Sub-library Multiplier			
Energy Grid	Automa	itic		Number of One Phonor			
Print Resolution	a, ß gri	dding resolution		Scatterers			
Asymmetry S(α, β)	Do Not	Print Asymmetric S(a, β)		Scatterers			
Differential Xsection	Do not	print	1.4	Maximum q to apply			
Incid	lent Energ	N		Polarization File	Import		
Number of Scatt	ering Angl	65					
lculation Configuration	in			Compound Material Proper	tγ		
Phonon Expansion	Order	100		In this material's chemical	formula, a total c 2		
Summed S(α , β)		Sum to the specified phonon orde	r +	kinds of elements are pre	sented with the number		
Apply Scatterer #		1		(month) or 1	on each eacher oppe		
Integral Type		Analytical Integral		Mass (amu) for each element	9.012182		
mperatures				Free Atom σ (b) for each element	6.153875		
mber of Temperatur	es 2						
emperatures: 300	400			ENUP TSL LIbrary MT #	27		
CID LABORAT	RIES						

FLASSH Code Features

	NJOY (LEAPR and THERMR)	FLASSH
Incoherent approximation	Yes	Νο
Cubic approximation	Yes	Νο
One atom per unit cell	Yes	Νο
Short Collision Time (SCT) Approximation	Yes	Νο
Coherent elastic scattering	Approximate (and hard coded for selected materials)	Exact formulation (any material based on user input)
Integral against α	Numerical	Analytical (optional numerical)
α,β grid	User input	Automatic (optional user input)
Parallel computing	N/A	Yes
Input syntax check	N/A	Yes
Graphical user interface	N/A	Yes

NJOY Be Scattering Law $S(\alpha, \beta)$

FLASSH Be Scattering Law $S(\alpha, \beta)$

α

Summary

ENDF/B-VIII is released with significant additions and modifications to the TSL sub-library

- The "new" TSL evaluations in ENDF/B-VIII all implemented atomistic simulations methods to support the evaluation process
- The use of new methods and performing first-ofkind evaluations highlighted the need to address issues such as
 - TSL measurements and benchmarks
 - TSL uncertainty quantification
 - TSL file structure (content and format)
 Use of GNDS