2018 ANS Winter Meeting November 11-15, 2018 • Orlando, FL

Impact of the Dynamic Structure Factor on Doppler Broadening for ²³⁸U in UO₂

Nina Colby Sorrell, Ayman I. Hawari

Department of Nuclear Engineering North Carolina State University Raleigh, NC 27695

Acknowledgements

 Funding and support from the Nuclear Criticality Safety Program (NCSP) and the Naval Nuclear Propulsion Program (NNPP)

Objective

 Determining the self component of the dynamic structure factor (i.e. thermal scattering law, TSL) for U in UO₂ and then perform Doppler broadening including structure impacts.

Outline

- Fundamental definitions for Doppler broadening
- Predictive model for uranium in UO₂
- Generation of Doppler broadened cross sections
 - Free gas
 - Impacts of the UO₂ density of states
- Non-cubic representation of the self component of the dynamic structure factor

Doppler Broadening

- Free Gas
 - Assumes a Maxwellian velocity distribution

$$\sigma^{FG}(E) = \int_{0}^{\infty} dE' S^{FG}(E', E) \sigma(E')$$

$$S^{FG}(E',E) = \frac{1}{\Delta\sqrt{\pi}}\sqrt{\frac{E'}{E}} \exp\left[\frac{-(E'-E)^2}{\Delta^2}\right]$$

$$T_{eff} = \overline{\varepsilon} = \frac{1}{2k_B} \int_{0}^{\infty} \rho(\omega) \omega \coth(\omega/2k_B T) d\omega$$

Doppler Broadening

Crystal Lattice

- Compound nucleus effects separated from lattice effects
- Transition probability

$$\sigma(E) = \frac{\sigma_0 \Gamma^2}{4} \int_{-\infty}^{\infty} d\beta \frac{S_s(\alpha, \beta)}{\left(E - E_0 - \beta k_B T\right)^2 + \left(\Gamma/2\right)^2}$$

- Self Scattering Law
 - Identical to that used in thermal scattering
 - Describes the energy-momentum phase space of a material
 - Currently implemented using the cubic approximation

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$$

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} \frac{\rho(\beta)}{2\beta \sinh(\beta/2)} \Big[1 - e^{-i\beta t} \Big] e^{-\beta/2} d\beta$$

Uranium Dioxide

- Ab initio lattice dynamics
 - Predictive density of states (DOS)
 - Current DOS implemented in the ENDF/B-VIII.0 cross section library for U in UO₂

Reduced wave vector coordinates (r.l.u)

- Fluorite Structure
- 2x2x2 supercell
- GGA-PBE+U

Free Gas Model

• Effective Temperature

- Used to correct the free gas model
- Calculated using the ENDF/B-VII.1 and ENDF/B-VIII.0 density of states
- At lower temperatures, larger difference between actual and effective temperature

	ENDF/B-VII.1 DOS	ENDF/B-VIII.0 DOS
23.6 K	99.11 K	91.07 K
293.7 K	308.98 K	305.22 K

Experimental Data

Energy (eV)	6.674	
gΓ _n (meV)	1.4923 ± 0.0011	
Γ _γ (meV)	22.711 ± 0.019	
Γ _f (µeV)	0.00988 ± 0.00039	

Resonance Parameters from Analysis

Energy (eV)	Source	gΓ _n (meV)
6.674	Experiment *	1.4923 ± 0.0011
6.678151	ENDF/B-VIII.0 CLM	1.49239733
6.678691	ENDF/B-VII.1 CLM	1.49245769
6.675936	ENDF/B-VIII.0 FGM	1.49214982
6.676205	ENDF/B-VII.1 FGM	1.49217989

- ENDF/B-VII.1 compared with ENDF/B-VIII.0 evaluation
 - Crystal Lattice Calculation
 - Calculation at 23.6K
 - Differences up to 200 barns

Dynamic Structure Factor

Full Equation

• U and V₀ are functions of the polarization vector and dispersion relations

Removing the Cubic Approximation

 \blacktriangleright U and V_0 are functions of the polarization vector and dispersion relations

 \blacktriangleright $\gamma(t)$ is the width function and a function of the density of states $\rho(\omega)$

Summary

- Predictive AILD techniques used to model U in UO₂
- Doppler broadening is impacted by the density of states
 - Crystal lattice calculations demonstrate improved agreement with experimental data
 - Evaluations consistent now with the ENDF/B-VIII.0 libraries
- Differences between the broadening based on the ENDF/B-VII.1 and ENDF/B-VIII.0 evaluation of UO₂
- Initial work to incorporate the non-cubic representation of the dynamic structure factor underway

Thank you!

411

Questions?