ANS Winter Meeting November 11-15, 2018 • Orlando, FL, USA

Development of a First-Principles Hydrogen Vibrational Spectrum in Liquid H₂O

A. Antony, A. I. Hawari

Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

Outline

Motivation and applications

□ *Ab-initio* Molecular Dynamics (AIMD)

□ Structural properties of H₂O from AIMD

Dynamical properties of liquid H_2O

Generation of vibrational density of states (VDOS) from AIMD simulations

Liquid H₂O in Nuclear Applications

- Light water is present in many critical systems
- Nuclear fuel coolant
- Natural shield against radioactive material
- Discrepancies in Thermal Scattering Law (TSL) libraries can be addressed with computational molecular models
- Molecular simulations are the precursor to cross-section calculations and TSL calculations needed for nuclear criticality safety measures

Macroscale \rightarrow Nanoscale Liquid H₂O

- Atomic and molecular properties from computational models are used to generate thermal neutron scattering cross-sections
- Cross-sections define reaction rates in materials and are needed to assess and inform design & utilization

Molecular properties of H₂O: Current Scientific Understanding

Density Functional Theory (DFT)

Finding the right electron density can be expressed in a way that involves solving a set of single electron Schrodinger equations:

All **V** terms are analogous to a classical interatomic potential energy ₆

Pseudopotentials in DFT

- Core electrons not necessarily important in defining chemical bonding and other physical characteristics – these properties are dominated by less tightly bound valence electrons
- Pseudopotentials reduce the computational burden of computing wave functions of the core electrons
 - Frozen core approximation

DFT-MD approach for liquid H₂O

- □ Vienna *Ab initio* Software Package (VASP)
- □ Initial models use PBE functional

- Physically correct starting structure is necessary for accurate and well-converged DFT calculations
- \square 32 H₂O molecules (96 atoms)
- \square 9.8Å \times 9.8Å \times 9.8Å simulation cell
- \Box Timestep = 0.5 fs
- □ NVT ensemble

□ Revised PBE with *dispersion corrections* (rPBE+D3)

Dispersion corrections in DFT

- **D** Empirical corrections
- Implemented to capture van der Waals (long-range) forces that are not included in exchange-repulsion and electrostatic interactions

$$E_{MF-D} = E_{MF} + E_{disp}$$

$$E_{disp} = -s_6 \sum_{i=1}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{R_{ij}^6} \left[\frac{1}{1 + e^{-\alpha(R_{ij}/R_0 - 1)}} \right] (R_{ij})$$

$$C_6^{ij} = 2 \frac{C_6^i C_6^j}{C_6^i + C_6^j}$$

Grimme, Stefan, Journal of computational chemistry (2004): 1463-1473.

Liquid H₂O Structure Generation

Structure built using "Amorphous Builder" module in MedeA ©

Too few H-bonds per molecule

3-4 H-bonds per molecule

Structure generated from TIP4P classical MD simulation

Structural information from radial distribution functions

Dynamical properties of liquid H₂O predicted by DFT-MD

12

Velocity autocorrelation function

13

Vibrational Spectrum from VACF

Improved functionals show promise for new liquid H₂O models

- □ SCAN functional (Temple U.)
- Computationally more expensive
- Not currently supported by the GPU version of VASP

	D _{self} (Ų/ps)	D _{self} (cm ² /s)
Experiment	0.230	2.30×10 ⁻⁵
PBE	0.053	0.53×10 ⁻⁵
SCAN	0.190	1.90×10 ⁻⁵

M. Chen et al., *PNAS*, (2017)

Summary

- Accurate cross-sections are needed to inform nuclear criticality safety analysis
- Molecular modeling techniques are used to generate VDOS which is the input to thermal neutron scattering cross-section calculations
- □ AIMD techniques explored for H₂O simulations
 - Aim is to avoid empirical or semi-empirical potentials that can be tedious to use
- **□** Further development to optimize computational implementation will allow new AIMD simulations to be used in generation of thermal scattering law (TSL) libraries for H₂O and other materials in the future 16

Acknowledgements

- □ Thanks to the US National Nuclear Security Administration (NNSA)
- Nuclear Critical Safety Program (NCSP)
- □ Naval Nuclear Propulsion Program (NNPP)