ANS Winter Meeting & Expo Joining Forces to Advance Nuclear

ENDF/B-VIII.0: the 8th major release of the ENDF/B library

D.A. Brown

ENDF/B-VIII.0 was released on 2 Feb. 2018 by the Cross Section Evaluation Working Group (CSEWG)

Integrates contributions for many sources

- Neutron Data Standards IAEA, NIST
- CIELO Pilot Project BNL led Fe, LANL led ¹⁶O and ²³⁹Pu, IAEA led ^{235,238}U
- Many new and improved neutron evaluations (DP, Crit. Safety, NE, USNDP)
- New thermal scattering libraries (Crit. Safety, Naval Reactors)
- Decay data USNDP (BNL)
- Charged particles USNDP (LLNL)
- New atomic data (LLNL)

NATIONAL LABORATORY

• Success rests on EXFOR & ENSDF libraries USNDP (BNL) compiles EXFOR reaction data for US & Canada USNDP develops the ENSDF library

Happy 50th Anniversary!*

* ENDF/B-I was released in June 1968

A lot changed

This is a giant release with many important changes

Sublibrary	VIII.0	VII.1	VII.0	VI.8
Neutron	557	423	393	328
Thermal n-scattering	33	21	20	15
Proton	49	48	48	35
Deuteron	5	5	5	2
Triton	5	3	3	1
Helium3	3	2	2	1
Alpha	1	n/a	n/a	n/a
Photonuclear	163	163	163	n/a
Atomic relaxation	100	100	100	100
Electron	100	100	100	100
Photoatomic	100	100	100	100
Decay data	3821	3817	3838	979
SFY	9	9	9	9
NFY	31	31	31	31
Standards	10	8	8	8

- CIELO: ¹H, ¹⁶O, ⁵⁶Fe, ²³⁵U, ²³⁸U, ²³⁹Pu
- Neutron Data Standards: ¹H, ³He, ⁶Li, ¹⁰B, ¹²C, ¹³C, ¹⁹⁷Au, ²³⁵U, ²³⁸U
- Essentially all new TSL sublibrary
- Major revisions to atomic relaxation, electroatomic and photo-atomic data
- New neutron evaluations for 49 stable and 125 unstable nuclei — there are no longer gaps in ENDF, so can do in-line activation
- Fun change: anti-neutrino spectra added to decay sublibrary (useful for non-proliferation and basic science)

Must consider all channels that connect to ¹⁷O compound nucleus

BROOKHAVEN NATIONAL LABORATORY

D. Brown et al., Nuclear Data Sheets 418, 1 (2018)

Most important changes to ⁵⁶Fe were to (in)elastic scattering

We tuned inelastic to match data from LANL (Nelson), elastic adjusted downward to compensate

D. Brown, et al. Nucl. Data Sheets 148, 1 (2018) M. W. Herman, et al. Nucl. Data Sheets 148, 214 (2018)

NATIONAL LABORATORY

Large overlap in evaluations of Big 3

- Neutron Data Standards: (n,f) cross section
- **P(nu) for neutrons and gammas** (Talou)
- Fission energy release (Lestone)
- PFNS & associated cov. (Neudecker)
- **PFGS new**, resolves long standing problem with fission gammas (Stetcu)
- Feedback from benchmarks
- Main differences: treatments of RR & Fast parts of evaluation

(n,γ) Cross Section

- New experimental results from DANCE measurement (Mosby et al.)
- New theoretical work (Kawano, CoH₃), including M1 "scissors" mode (also, Ullmann et al.)

Prompt Fission Neutron Spectrum

- Small tweak for thermal PFNS to improve modeling of Plutonium thermal solution benchmarks
- Unchanged from B-VII.1 from 0.5 to 5 MeV
- New evaluation (Neudecker et al.) above 5 MeV
- Preliminary chi-nu data (Kelly et al.)

ENDF/B-VIII TSL Evaluations

Material	ENDF Library Name	Evaluation Basis	Institution
Bervllium metal	tsl-Be-metal.endf	DFT/LD	NCSU
Beryllium oxide (beryllium)	tsl-BeinBeO.endf	DFT/LD	NCSU
Beryllium oxide (oxygen)	tsl-OinBeO.endf	DFT/LD	NCSU
Light water (hydrogen)	tsl-HinH2O.endf	MD	САВ
Light water ice (hydrogen)	tsl-HinIceIh.endf	DFT/LD	BAPL
Light water ice (oxygen)	tsl-OinIceIh.endf	DFT/LD	BAPL
Heavy water (deuterium)	tsl-DinD2O.endf	MD	CAB
Heavy water (oxygen)	tsl-OinD2O.endf	MD	CAB
Polymethyl Methacrylate (Lucite)	tsl-HinC5O2H8.endf	MD	NCSU
Polyethylene	tsl-HinCH2.endf	MD	NCSU
Crystalline graphite	tsl-graphite.endf	MD	NCSU
Reactor graphite (10% porosity)	tsl-reactor-graphite-10P.endf	MD	NCSU
Reactor graphite (30% porosity)	tsl-reactor-graphite-30P.endf	MD	NCSU
Silicon carbide (silicon)	tsl-CinSiC.endf	DFT/LD	NCSU
Silicon carbide (carbon)	tsl-SiinSiC.endf	DFT/LD	NCSU
Silicon dioxide (alpha phase)	tsl-SiO2-alpha.endf	DFT/LD	NCSU
Silicon dioxide (beta phase)	tsl-SiO2-beta.endf	DFT/LD	NCSU
Yttrium hydride (hydrogen)	tsl-HinYH2.endf	DFT/LD	BAPL
Yttrium hydride (yttrium)	tsl-YinYH2.endf	DFT/LD	BAPL
Uranium dioxide (oxygen)	tsl-OinUO2.endf	DFT/LD	NCSU
Uranium dioxide (uranium)	tsl-UinUO2.endf	DFT/LD	NCSU
Uranium nitride (nitrogen)	tsl-NinUN.endf	DFT/LD	NCSU
Uranium nitride (uranium)	tsl-UinUN.endf	DFT/LD	NCSU

The library is well tested

ENDF/B-VII.1

ENDF/B-VIII.0 is our best performing and highest quality library yet

FIG. 29. (Color online) The distribution of C/E, in units of the combined benchmark and statistical uncertainty. The normal distribution (in black) would be the perfect situation.

There are many ways to "get the right answer"

- E. Bauge, et al. (CEA-DAM)
- Swap portions of one evaluation for other until completely swapped
- Elastic & inelastic scattering provided biggest swing

BRC09 (CEA)	ENDF-VII.1			
k_{eff} =1.00082(11)	k_{eff} =1.00060(12)			
How does k _{eff} change	when a BRC09 value			
is replaced by one from ENDF-VII.1?				
Quantity	$\Delta k_{eff} (1000^{\text{th's of \%}})$			
Fission	-138			
Capture	+269			
Elastic Scattering	-638			
Inelastic Scattering	±522			

The end result is a lack of confidence in modeling systems that significantly differ from the integral benchmark

Figure from L. Bernstein

Situation "unchanged" in VIII.0

FIG. 28. (Color online) Simulations of criticality k-eff for ²³⁹Pu for two critical assemblies: a fast assembly (Jezebel, PMF-1), and a thermal assembly (PST-4). This figure shows that both LANL CIELO-1 (ENDF/B-VIII.0) and CEA CIELO-2 (JEFF-3.3) predict similar k-eff values, but do so for very different reasons. The changes in criticality are evident when individual cross section channels are substituted between the two evaluations.

We focused on thermal & fast applications, but had some fun too

(AGB) star, AGB's are believed to be the site of the s-process

http://www.eso.org/public/images/potw1447a/ ESO/S. Ramstedt (Uppsala University, Sweden) & W. Vlemmings (Chalmers University of Technology, Sweden)

D. Brown et al., Nuclear Data Sheets 418, 1 (2018)

ENDF/B-VIII.0 is our best performing and highest quality library yet, but there are warts

NATIONAL LABORATORY

Transmission experiments proved to be very informative

D. Brown et al., Nuclear Data Sheets 418, 1 (2018)

 $\sigma_{tot}^{(nat}Fe)$, b

1≠50

10

0.2

F20

-200

-400

VIII.0-VII.1, mb

NATIONAL LABORATORY

Still have work to do for neutron transmission in fission spectrum range

There is still work to do

Nuclei near closed shells have large cross section fluctuations that extend to high energies — These fluctuations dramatically impact neutron leakage and scattering

D. Brown, et al. Nucl. Data Sheets 148, 1 (2018) M. W. Herman, et al. Nucl. Data Sheets 148, 214 (2018)

These fluctuations impact neutron flux and leakage

Figure from https://www.nuclear-power.net/nuclear-power/reactor-physics/ nuclear-engineering-fundamentals/neutron-nuclear-reactions/neutron-fluxspectra/

Fluctuations are individual neutron resonances

At low energies, can resolve them, at high energy they are run together and we can no longer resolve them

A multi-pronged effort is needed

- Improved RRR QA
- Improved treatments of Width Fluctuation Correction and URR probability tables
- Improved connections between RRR, URR and fast, which may imply superradiance!
- (n,n'g) measurements to remove evaluator knob
- More shielding benchmarks in testing regime
- TEX and CURIE!

Tantalum Experiment Characteristics

Experiment Number	Thickness of PE Plates (cm)	Thermal Fission Fraction (<0.625 eV)	Intermediate Fission Fraction (0.625 eV- 100 KeV)	Fast Fission Fraction (>100 KeV)
6	0 (no PE)	0.07	0.14	0.79
7	0.159	0.8	0.36	0.56
8	0.476	0.19	0.45	0.36
9	1.111	0.43	0.36	0.21
10	2.540	0.64	0.22	0.14

Main messages

ENDF/B-VII.1 was very good

- k_{eff}=1 is "baked in", which surprisingly is a problem for many customers
- k_{eff}=1 but with really big uncertainty does mean we biased the mean somehow, but were conservative with our uncertainty estimates
- But... ENDF/B-VIII.0 is much better
- There is still a lot of room for improvement
- Files available at <u>http://www.nndc.bnl.gov/endf/b8.0/download.html</u>

Library and evaluations detailed in Nuclear Data Sheets vol. 148 (2018)

- ENDF/B-VIII.0: D. Brown *et al.*, Nuclear Data Sheets 148, 1 (2018)
- Neutron Data Standards: A. Carlson *et al.*, Nuclear Data Sheets 148, 143 (2018)
- CIELO Overview: M.B. Chadwick, *et al.*, Nuclear Data Sheets 148, 189 (2018)
- CIELO Iron: M. Herman, *et al.*, Nuclear Data Sheets 148, 214 (2018)

- CIELO Uranium: R. Capote, et al., Nuclear Data Sheets 148, 254 (2018)
- PFNS evaluation: D. Neudecker, et al., Nuclear Data Sheets 148, 293 (2018)
- ²³⁹Pu(n,g) measurement: S. Mosby, et al., Nuclear Data Sheets 148, 312 (2018)
- ²³⁵U PFNS measurement: M. Devlin, et al., Nuclear Data Sheets 148, 322 (2018)

A Journal Devoted to Compilations and Evaluations of Experimental and Theoretical Results in Nuclear Physics E. A. McCutchan, Editor rel Nuclear Deter Center Beochemen Visional Laboratory Users, NY 11072-5000 J

National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA www.nndc.bnl.gov

> Special Issue on Nuclear Reaction Data

Special Issue Editor: Pavel Obložinský Special Issue Assistant Editor: Boris Pritychenko

Contents

Contents continued on the back cover page

Happy 50 ± 1 Anniversary!*

* CSEWG formed in 1966 ENDF/B-I released in 1968

