Inventory-Based Computational Analysis of Hanford Tank Waste

Alyssa Kersting

washington **river protection** *solutions*

11-13-2018 ANS Winter Meeting

Tank Farms Overview

M. S.M.

washington **river protection** *solutions*

HANFORD TANK WASTE

Manganese

Nickel

Silicon

- Product of more than 40 years of plutonium production
 - 3 chemical separations processes
 - Many distinct waste streams and compositions
- 56 million gallons in 177 tanks, including:
 - Various metals
 - **Fission products**
 - Uranium (~600 metric tons)
 - **Plutonium** (670 kg)
- Criticality safety analysis based on presence of absorber metals:

- Aluminum
- Chromium
- Iron

orotection solutions

3

TANK WASTE PHASES

• Supernatant

- Liquid phase
- Minimal Pu (~3.5 kg, less than 0.5% of total)
- Saltcake
 - Crystallized liquids from Evaporator concentration
 - Majority sodium, much lower Pu masses
- Sludge
 - Non-water soluble compounds
 - Large amounts of iron, manganese, aluminum
 - Holds majority of tank plutonium

THE BEST-BASIS INVENTORY (BBI)

- Database of best-estimate tank inventories for:
 - 46 radionuclides
 - 25+ chemical analytes
- Estimates from tank history, sample data, fuel depletion calculations
- Many distinct purposes:
 - Retrieval / transfer planning
 - Chemical compatibility analysis
 - Safety basis requirements (H₂ generation)
 - Criticality safety (Pu & absorber masses)
- Tank contents split into "layers" [currently: 566]
 - Often represent one origin / composition

Tank-Specific Calculations

washington **river protection** *solutions*

CALCULATION DESIGN AND METHOD

- One calculation input per tank layer:
 - Infinite-geometry, homogenous MCNP model
 - Element / isotope mass ratios derived BBI inventory
- Inner search on water fraction (wt%) \rightarrow find maximum k_{eff} (optimal moderation)
 - Water fraction is a BBI parameter
 - Realistic waste contains H in compounds (mainly hydroxides)
 - Highly overmoderated analysis assumptions very conservative
- Outer search on plutonium mass multiplier \rightarrow max k_{eff} in target range
 - Relative increase of Pu mass (versus other solids)
- Calculations performed for all sludge, saltcake layers

MODEL #1 – UNMODIFIED ABSORBER INVENTORIES

- Include only Pu and credited absorbers
 - Ignores other, large-mass waste constituents (Na)
 - Absorbers modelled as oxides
- No layer with Pu multiplier < 1.0
- Five layers < 2.5x
 - All associated with Plutonium Finishing Plant
 - Already known to criticality safety
 - Controls on mixing tank solids
- Five layers between 2.5 and 5.0
- Large margin on most tank farms Pu
 - 75% of Pu located in layers > 5x
 - 50% of Pu located in layers > 10x

MODEL #2 – REDUCTION BY SOLUBILITY FACTORS

Current evaluation applies element-specific reduction factors 35 Bounds Pu/absorber separation due to dissolution 30 Largest reductions on aluminum content (As-Is Multiplier / Solubility-Adjusted Multiplier) 25 General reduction in calculated Pu **multipliers** 20 88% of plutonium in layers > 2.5 x15 75% of plutonium in layers > 5 x10 Largest change in high-aluminum layers Mainly cladding waste \rightarrow low Pu content 0 0.01 01

MODEL #3 – REDUCTION BY BBI WASH FACTORS

- Tank-specific estimates for removal fractions
 - Developed for retrieval process modelling
 - Mainly based on experimental data from tank samples
 - Accounts for different chemical components
- NCS solubility assumptions nearly always individually bounding for each element
 - Small fraction of tank/absorber combinations have BBI predict more individual removal
 - Assumption was: solubility factors were conservative <u>taken together</u>, over all absorbers

• Confirmed criticality safety assumptions bound tank-specific removal fractions.

- Only 6 layers had the BBI values giving a more conservative final composition
- All had very small Pu masses (< 10 g) or high Pu mass multipliers (> 200x)
 - No criticality safety significance
 - Mainly Al cladding waste (98% vs. 100% removal of Al)

MODEL #4 – ADDING URANIUM INVENTORIES

• <u>600 metric tons</u> uranium in tank waste

- Most (75%) at or just below natural enrichment
- Maximum enrichment 1.02% ²³⁵U
- Single primarily-²³³U layer
 - Likely mixed with other waste during C Farm retrieval
- Previous analysis discussed U and Pu separately
- Adding U into calculations already applying solubility factors (absorber reduction):
 - 70% of plutonium in layers > 10 x
 - 80% of plutonium in layers > 5 x
 - 92% of plutonium in layers > 2.5 x
 - Only 4 layers still between 1x and $2x \rightarrow all PFP$ -related (minimal U content)

Previous Tank Waste Models

washington **river protection** *solutions*

"CARTER MODEL" (1979)

 Created from the four available tank samples 	Composition (g/L)	
• 2 from AX-104, one each from A-106 and C-106	Al	100
 Took bounding values for each absorber 	Fe	100
 Composition modified to due to code limitations 	Na	50
Mercury cross-sections not available	Mn	5
• Limit of 10 isotopes in one calculation	Si	35
➢ Hg, Cr, Ni proportionally re-assigned to Mn	Cr	3
• Pu concentration varied until $k_{\infty} < 1.0$ for all H-to-X	Hg	0 or 10
• 1979 calculated value was 3 g Pu/L, limits based on 1 g Pu/L	Ni	4
• Using MCNP 6.2 and ENDF/B-VII.1 (without isotope substitutions):	NO ₃	13 or 130
> 2.40 g Fu / L at $k = 0.955$ > 2.83 g Pu / L at $k = 1.0$	O (compounds)	200

"CONSERVATIVE WASTE MODEL" (1993)

Primarily derived from sample data	Composition (wt%)	
 28 sample analyses, covering 16 tanksSome input from overall tank inventory estimates	О	40.7
Developed to produce smaller macroscopic absorption	Р	6.9
cross-section than actual waste	Si	3.8
• 2002 report compared with against inventory data for all tanks with more than 20 kg Pu	Na	21.5
Calculated subcritical limit of 2.6 g Pu / L.	Al	7.2
• Part of criticality safety evaluation until 2015	Fe	19.9
	Solids densit	y: 1200 g/L

CONCENTRATION LIMIT COMPARISON

Search results give a <u>layer-</u> <u>specific</u> measure of neutron absorption in solids:

> How do the assumptions from older waste models compare?

Waste Solids Model	Subcritical Pu Concentration	Fraction of Pu Mass Bounded by Model
	1.0 g/L [derived operating limit]	100%
Carter (1979)	2.8 g/L [MCNP 6.2 – 2018]	92%
	3 g/L [GAMTEC II – 1979]	85%
CWM (1993)	2.6 g/L	97%

CONCLUSIONS

- With modern computer speeds, a new tool to look at criticality safety in tank waste:
 - Pu multiplier gives a more definitive assessment of subcritical margin
 - Compare specific effects of different modelling assumptions
 - Identify any additional layers of potential interest
- Assumptions used to generate previous sets of absorber models shown to bound nearly all tank farms Pu
- Calculations are part of larger effort to focus analysis more onto specific tanks of greatest concern

