Application of the Limiting Surface Density Method to Arrays of 9975 Shipping Packages with Plutonium Oxide

2018 ANS Winter Meeting, Orlando, FL

James Baker

KAC Nuclear \& Criticality Safety Engineering
Savannah River Nuclear Solutions, LLC
SRNS-STI-2018-00571 November 2018

Introduction

- Reducing our computational burden by extending the Limiting Surface Density (LSD) Method to apply to arrays of 9975 shipping packages with Pu Oxide

- LA-14244-M (Hand Calculation Primer) has an overview and several example applications for the original method by Joe Thomas.

Background

- Previous work for Pu Metal contents is given in:
- 2017 NCSD Topical Meeting, Verification Suite for the Application of the Limiting Surface Density Method to Arrays of 9975 Shipping Packages, J. Baker, T. Stover, M. Ratliff and G. Mitschelen.
- Nuclear Science and Engineering, Volume 190, Issue 2, pp 176-194, Limiting Surface Density Method Adapted to Large Arrays of Heterogeneous Shipping Packages with Nonlinear Responses, T. Stover, J. Baker, M. Ratliff and G. Mitschelen, May 2018.

Full Derivation of LSD Relationships

- Start with basic reactor physics relationships:

$$
B_{g}^{2}=\frac{\pi^{2}}{\left(d_{x}+2 \lambda_{x}\right)^{2}}+\frac{\pi^{2}}{\left(d_{y}+2 \lambda_{y}\right)^{2}}+\frac{\pi^{2}}{\left(d_{z}+2 \lambda_{z}\right)^{2}}
$$

- After 7 pages of algebra you have:

$$
\frac{\mathrm{m}_{\mathrm{c}} \mathrm{n}}{\left(2 \mathrm{a}_{\mathrm{n}}\right)^{2}}\left(1-\frac{\mathrm{c}}{\sqrt{\mathrm{~N}}}\right)^{2}=\mathrm{c}_{2}\left(\mathrm{~m}_{\mathrm{c}}-\mathrm{m}_{\mathrm{o}}\right)
$$

- See derivation in excruciating detail in our Journal paper

Deriving New Constants

- From Thomas' classic (original) method derivation:

$$
\frac{\mathrm{m}_{\mathrm{c}} \mathrm{n}}{\left(2 \mathrm{a}_{\mathrm{n}}\right)^{2}}\left(1-\frac{\mathrm{c}}{\sqrt{\mathrm{~N}}}\right)^{2}=\mathrm{c}_{2}\left(\mathrm{~m}_{\mathrm{c}}-\mathrm{m}_{\mathrm{o}}\right)
$$

- where:

$$
c=\sqrt{\frac{4 \lambda_{\text {array }^{2} N B_{N}^{2}}^{3 \pi^{2}}}{} \text {. }}
$$

$-c$ and c_{2} are empirically determined constants

- How to derive c??
- Clues given in Thomas' paper Y-CDC-10, Appendix B

Deriving the Constants (cont'd)

- KENO-VI calculations for critical mass of arrays across the parameter ranges of interest: array size \& spacing ($2 a_{n}$)
- Cubic arrays with number per side, n , from 4 to 10
$-N=n_{x}{ }^{*} n_{y}{ }^{*} n_{z} \quad 64 \leq N \leq 1000$
- Unit Spacing: $46.6 \mathrm{~cm} \leq 2 \mathrm{a}_{\mathrm{n}} \leq 150 \mathrm{~cm}$
- Reflected by 30 cm thick concrete on all 6 sides
- Critical mass found for each combination of array size and spacing (49 different arrays)
- Pu oxide assumed to be theoretical density with $0.5 \mathrm{wt} \%$ moisture

Simplified 9975 KENO-VI Model

Vertical Slice of $4 \times 4 \times 4$ Cubic Close-Packed Array

Horizontal Slice of Array Model

Critical Array Fissile Mass (kg) per Package

Non-Linear Response for Surface Density

 $\left[=c_{2}\left(\mathrm{~m}_{\mathrm{c}}-\mathrm{m}_{0}\right)\right]$

Computing the Constants

- From the derivation of array buckling (leakage):

$$
\begin{aligned}
& N B_{N}^{2}=\frac{3 \pi^{2}}{m_{c}} c_{3} e^{c_{4} m_{c}} \\
& \text { where: } c_{3}=2.63031 \mathrm{E}+4, \text { and } c_{4}=-0.694645
\end{aligned}
$$

- Extrapolation distance is calculated from:

$$
\lambda_{\text {array }}{ }^{2}=\frac{N 3 \pi^{2}}{4 N B_{N}^{2}}\left(1-\sqrt{\frac{4 a_{n}^{2} N B_{N}^{2}}{n 3 \pi^{2}}}\right)^{2}
$$

Computing the Geometric Constant, c

- Average value of $N B_{N}^{2} \lambda_{\text {array }}{ }^{2}=3.23$,
- Returning to the definition of c :

$$
c=\sqrt{\frac{4 \lambda_{\text {array }}{ }^{2} N B_{N}^{2}}{3 \pi^{2}}}
$$

- Yields c = 0.66
- Similar to Thomas' value of $0.55+/-0.18$

Checking the Method-Using Cubic Arrays

- The relationship to estimate critical mass is:

$$
m_{c}=\frac{\left(2 a_{n}\right)^{2} c_{3} e^{c_{4} m_{c}}}{n\left(1-\frac{c}{\sqrt{N}}\right)^{2}}
$$

- Using this to calculate m_{c} for the 49 cubic arrays
$-4 \leq n \leq 10,46.6 \mathrm{~cm} \leq$ Pitch $\leq 150 \mathrm{~cm}$
- Comparing the LSD and KENO-VI critical mass values:
- Average $\Delta \%=0.62$
- Maximum $\Delta \%=1.7$

LSD vs. KENO-VI Critical Unit Mass

for Realistic Arrays with Pu Oxide

- 42 non-cubic arrays were chosen: $2 \times 20 \times 1,2 \times 30 \times 1,2 \times 20 \times 2,2 \times 20 \times 3$, $4 \times 20 \times 3,5 \times 5 \times 3$. Also varying pitch: $46.6 \mathrm{~cm} \leq 2 a_{n} \leq 150 \mathrm{~cm}$
- Comparing the LSD and KENO-VI critical mass values:
- Average $\Delta \%=2.5$
- Maximum $\Delta \%=5.2$
- LSD values generally under-predict the KENO-VI value
- Agreement not as good as for same arrays with Pu metal contents. For those:
- Average $\Delta \%=0.6$
- Maximum $\Delta \%=1.3$

Empirical Adjustment to Critical Mass Based on Array Shape and Pitch

$$
m_{c, a d j}=m_{c} \frac{\left(1+R^{2.5}\right)}{100} *\left(1.01-\left(14.3 P^{-1.58}\right)\right)
$$

where: $\quad R=$ Shape Factor, given by:

$$
R=\frac{\sqrt[3]{N}}{3}\left(\frac{1}{n_{x}}+\frac{1}{n_{y}}+\frac{1}{n_{z}}\right)
$$

$\mathrm{P}=$ Horizontal Pitch (unit cell dimension) in cm

With this adjustment, overall results improved:

- Average $\Delta \%=0.8$
- Maximum $\Delta \%=2.2$

Application Considerations

- There is much more safety margin for Pu oxide contents that with Pu metal
- For quick reactivity effect estimates, great precision is not needed
- Empirical adjustment might not be needed
- Does not improve results significantly for minimum pitch (no spacing), where the Δ is less than $+/-2.5 \%$.

Sample Application

- Program relationships into a spreadsheet:

$$
m_{c}=\frac{\left(2 a_{n}\right)^{2} c_{3} e^{c_{4} m_{c}}}{n\left(1-\frac{c}{\sqrt{N}}\right)^{2}} \quad k_{e f f}=\left(\frac{m}{m_{c}}\right)^{1 / 3}
$$

- Examples for $10 \times 14 \times 3$ array, with $5 \mathrm{~kg} \mathrm{PuO}_{2}$ in each package
- What is safety margin for normal conditions?
- What is the effect of:
- Excess stacking (4 high)?
- Double batching (10 kg)?
- Changing the array pitch?

Example 1: $10 \times 14 \times 3$ Array of $9975 \mathrm{~s}, 5 \mathrm{~kg} \mathrm{PuO} 2$ Each, Units Touching

- What is the critical mass per unit?
- What is $\mathrm{k}_{\mathrm{eff}}$?

4													
5				$\mathrm{c}=$	0.6602								
6				c3 $=$	26303								
7				c4 $=$	-0.6946								
8													
9							Array						
10						Shape	Pitch	a_{n}	Constants	Solver	LSD	Loading	k-eff
11	n_{x}	n_{y}	n_{2}	N	$\mathrm{N}^{1 / 3}$	Factor	(cm)	(cm)	Multiplier	Equation	m_{c}	(kg)	
12	10	14	3	420	7.489	1.260	46.6	23.3	8143340	-7.1E-13	18.7	5.000	0.644
13													

Example 2: Excess Stacking 4 High

- What is the critical mass per unit?
- What is $\mathrm{k}_{\mathrm{eff}}$?

8													
9							Array						
10						Shape	Pitch	a_{n}	Constants	Solver	LSD	Loading	k-eff
11	n_{x}	n_{y}	n_{2}	N	$\mathrm{N}^{1 / 3}$	Factor	(cm)	(cm)	Multiplier	Equation	m_{c}	(kg)	
12	10	14	3	420	7.489	1.260	46.6	23.3	8143340	-7.1E-13	18.692	5.000	0.644
13	10	14	4	560	8.243	1.158	46.6	23.3	7333166	-2.9E-07	18.552	5.000	0.646
14													

Example 3: Excess Mass, 10 kg PuO , Each

- What is $\Delta k_{\text {eff }}$?

| 8 | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | | | | | | | Array | | | | | | |
| 10 | | | | | | Shape | Pitch | a_{n} | Constants | Solver | LSD | Loading | \mathbf{k}-eff |
| 11 | n_{x} | n_{r} | $\mathrm{n}_{\mathbf{z}}$ | N | $\mathbf{N}^{1 / 3}$ | Factor | $\mathbf{(c m})$ | $\mathbf{(c m})$ | Multiplier | Equation | $\mathrm{m}_{\boldsymbol{c}}$ | $\mathbf{(k g})$ | |
| 12 | 10 | 14 | 3 | 420 | 7.489 | 1.260 | 46.6 | 23.3 | 8143340 | $-7.1 \mathrm{E}-13$ | 18.692 | 5.0 | 0.644 |
| 13 | 10 | 14 | 3 | 420 | 7.489 | 1.260 | 46.6 | 23.3 | 8143340 | $-7.1 \mathrm{E}-13$ | 18.692 | $\mathbf{1 0 . 0}$ | $\mathbf{0 . 8 1 2}$ |
| 14 | | | | | | | | | | | | | |

Example 4: Changing Spacing

- Assume decrease of 5 cm , or an increase of 10 cm
- What is new critical mass?
- What is $\Delta \mathrm{k}_{\text {eff }}$?

8														
9							Array							
10						Shape	Pitch	a_{n}	Constants	Solver	LSD	Loading	k-eff	Δk-eff
11	n_{x}	n_{y}	n_{2}	N	$\mathrm{N}^{1 / 3}$	Factor	(cm)	(cm)	Multiplier	Equation	m_{c}	(kg)		
12	10	14	3	420	7.489	1.260	46.6	23.3	8143340	-7.1E-13	18.692	5.0	0.644	
13	10	14	3	420	7.489	1.260	41.6	20.8	6489592	-3.2E-06	18.389	5.0	0.648	0.004
14	10	14	3	420	7.489	1.260	56.6	28.3	12013335	-8.8E-07	19.213	5.0	0.638	-0.006
15														

Conclusions

- LSD Method provides good agreement with KENO-VI for arrays of 9975 shipping packages with Pu Oxide.
- Allows rapid estimates for safety margin for varying mass, spacing, and array sizes.
- Can be used to evaluate variety of normal and credible abnormal conditions.
- Helps develop understanding of the physics.

Questions?

Supplemental Discussion: Basic Concept

- Buckling relationships can be used to relate one critical array to another, using empirically derived constants.
- First, assume that one has a critical array of identical fissile items, specified by its isotopics, mass/unit, spacing, array shape, etc.
- Changes in one parameter (e.g., mass or spacing) may be compensated by changes in another parameter so that the resulting array is also critical.

Can LSD work for shipping package arrays?

- Thomas' LSD method is very good for air-spaced arrays of solid items (see Hand Calculation Primer Sec. 7)
- Caveat 1: Derivation uses cubic arrays of cubic units
- Caveat 2: Each unit may be surrounded by $\leq 1 / 2$ inch of steel
- Problems and Challenges:
- 9975s are not cubic; nor are the arrays
- 9975s have several nested layers of packaging material (steel, lead, Celotex ${ }^{\top M}$)
- Some packaging varies among 9975s
- Unclear how to derive the necessary constants

