2-Exponential PDF and Analytic Uncertainty Approximations for Rossi-alpha Histograms

ANS Winter Meeting: Orlando, FL

Michael Hua, Jesson Hutchinson, Geordie McKenzie, Mark Nelson

13 November, 2018

Introduction

- Special nuclear material (SNM) undergoes fission; neutrons from fission can cause another fission...
 - → neutron-multiplying system (characterized by reactivity).
- The reactivity of a subcritical system is of interest in:
 - Nuclear Nonproliferation: fuel pin diversion? Is a source
 - neutron-multiplying?
 - Criticality Safety: will the reactor regain subcriticality during normal and credible upset conditions? In-situ measurements.
 - Accelerator-Driven Systems
 - Emergency Response: determine if a sample is multiplying or if neutrons are from another source e.g., (alpha,n).
- **Challenge**: we cannot directly estimate a system's subcritical reactivity.

Background

- In neutron-multiplying (fission-chain) systems, neutron emissions/detections are not uniformly distributed in time.
 - This is due to time-correlation between <u>prompt</u> neutrons originating from the same fission.
- The non-uniformity can be observed by producing a histogram of the times between neutron detections.
 - This is the Rossi-alpha histogram.
- Traditionally, it is assumed the trend is described by:

$$p(t) = A + Be^{\alpha t}$$

 α is the *prompt-neutron decay constant*.

Sample Rossi-alpha plot.

- The <u>subcritical reactivity</u> can be inferred from the prompt neutron decay constant, alpha.
- We can estimate alpha by fitting the Rossi-alpha histogram with p(t).

Prior Work

- It has been shown for detectors with polyethylene moderation that a 2-exp fit is more adequate than an 1-exp fit due to *slowing-down time*.
 - For this presentation, we assume 2-exp is more adequate and focus on the physical meaning/correspondence of the 2-exp.
- A two-region point-kinetics model for the number of neutrons in a fissile core and reflector has been developed.
- Currently, uncertainty in the estimated Rossi-alpha parameter is calculated by taking <u>many</u> measurements/splitting one <u>long</u> measurement and obtaining a sample standard deviation.

$$\frac{dN_c}{dt} = \frac{k_c - 1}{\ell_c} N_c + f_{rc} \frac{N_r}{\ell_r}$$

$$\frac{dN_r}{dt} = f_{cr} \frac{N_c}{\ell_c} - \frac{N_r}{\ell_r}$$

$$N_c(t) = N_0[(1 - R)e^{r_1 t} + (R)e^{r_2 t}]$$

$$r_{j} = \frac{(-1)^{j} \sqrt{4\ell_{c}\ell_{r}(f_{rc}f_{cr} + k_{c} - 1) + \left(\ell_{c} - \ell_{r(k_{c} - 1)}\right)^{2} - \ell_{c} + \ell_{r}(k_{c} - 1)}}{2\ell_{c}\ell_{r}}$$

$$= (-1)^j \sqrt{\frac{f' + \alpha}{\ell_r} + \frac{1}{4} \left(\frac{1}{\ell_r} - \alpha\right)^2} + \frac{1}{2} \left(\alpha - \frac{1}{\ell_r}\right) \qquad \qquad f' = \frac{f}{\ell_c}$$

$$R = \frac{r_1 - \alpha}{r_1 - r_2}$$

 $N_c = \#$ of neutrons in fissile core $N_r = \#$ of neutrons in reflector

 k_c = multiplication factor in core

 ℓ_c = mean n lifetime in core

 ℓ_r = mean n lifetime in reflector

 f_{cr} = frac. of core-to-reflector leakage

 $f_{rc} =$ frac. of reflector-to-core leakage

Goals and Motivations

- Extract alpha: While it has been shown that a 2-exp fit is more adequate, we do not yet know how to calculate alpha (or other parameters) from the fit.
 - Rossi-alpha analysis is obsolete otherwise.
 - For most applications, the time between emission and detection (and it's distribution) is nonnegligible.
- Estimate Uncertainty: Currently, we rely on many measurements/long measurements.
 - Having an analytic model will allow uncertainty estimations from a single measurement, ultimately reducing procedural and operational costs.
 - This work also proposes a method of estimating the covariance/correlation between parameters.
- **Application Versatility**: Our first-principles approach will enable adaptation to various applications (including parasitic absorption in the reflector/core).

L. G. Evans, et al., "A new fast neutron collar for...," *Nuclear Instruments and Methods Section A*, **729**, p740-746, (2013).

Probability Density Function Derivation

- We can relate the fission rate (dF/dt) to the number of neutrons in the core via the mean time to fission (generation time), τ_f .
- The number of resulting neutrons is given by multiplying the mean number of neutrons from fission.
- On a case-by-case basis, assuming ε is efficiency, the probability of:
 - i. A fission in dt_0 about t_0 is (with average fission rate $\dot{F_0}$):
 - ii. A count at t_1 as a result of fission at t_0 is:
 - iii. A count at t_2 as a result of a count at t_1 is:
- The probability of a count at t_1 followed by a count at t_2 from a common ancestor (not at t_1) is obtained by integrating the product of (i)-(iii) over $-\infty < t_0 < t_1$ and averaging over the distribution of neutrons emitted per fission.

Performing the integration and choosing $t_1 = 0$ and including a constant term to account for uncorrelated counts yields:

$$\frac{dF}{dt} = \frac{N_c(t)}{\tau_f}$$

$$\frac{dN}{dt} = \bar{v} \frac{N_c(t)}{\tau_f} = \bar{v} N_0 \frac{dt}{\tau_f} [(1 - R)e^{r_1 t} + Re^{r_2 t}]$$

i. $\dot{F}_0 dt_0$

ii.
$$\varepsilon v \frac{dt_1}{\tau_f} \left[(1 - R) e^{r_1(t_1 - t_0)} + R e^{r_2(t_1 - t_0)} \right]$$

iii.
$$\varepsilon(\nu-1)\frac{dt_2}{\tau_f}[(1-R)e^{r_1(t_2-t_1)}+Re^{r_2(t_2-t_1)}]$$

To account for the neutron detected at t₁

$$p(t) = -\frac{\varepsilon \overline{\nu(\nu - 1)}}{2\tau_f^2} (e^{r_1 t} \rho_1 + e^{r_2 t} \rho_2) + C$$

 ρ_1 and ρ_2 are constant functions of R, r_1 , and r_2

Rossi-alpha and Reflector Time

- We now have a PDF!
- This is the function we would use to fit the Rossi-alpha histogram.

$$p(t) = -\frac{\varepsilon \overline{\nu(\nu - 1)}}{2\tau_f^2} (e^{r_1 t} \rho_1 + e^{r_2 t} \rho_2) + C$$

- Note: it is <u>not</u> the case that one exponent corresponds to the Rossi-alpha while one exponent corresponds to the reflector time.
 - Reflector Time is the time between birth and detection (given the neutron is detected).

$$\alpha = (1-R)r_1 + (R)r_2 \qquad \qquad \ell_r = -\frac{1}{(R)r_1 + (1-R)r_2} \qquad \qquad f' = \frac{f_{cr}f_{rc}}{\ell_c} = -\frac{(1-R)(R)(r_1-r_2)^2}{(R)r_1 + (1-R)r_2}$$

$$\rho_1 = \frac{(1-R)^2}{r_1} + \frac{2(1-R)(R)}{r_1 + r_2} \qquad \rho_2 = \frac{(R)^2}{r_2} + \frac{2(1-R)(R)}{r_1 + r_2}$$

Los Alamos National Laboratory

Measurement

- Both systems should measure the same $\alpha...$ They do: 1- σ intervals overlap
- The ℓ_r differ by 26.68 us... We expect < 35 us since outgoing neutrons have already seen poly

Comparison of measurement systems with differing poly.

	Bare Tubes	MC-15
$-1/\alpha$ (us)	63.9795 ± 3.7045	59.9161 ± 0.8616
$\ell_{\rm r}$ (us)	68.40 ± 2.39	95.08 ± 1.27

Comparison of alpha fit results from 2-exp and 1-exp fits.

	Bare Tubes	MC-15
2 -exp $-1/\alpha$ (us)	63.9795 ± 3.7045	59.9161 ± 0.8616
$1-\exp -1/\alpha$ (us)	171	225

- The alpha's are (very) different.
- Reflector time is folded into the calculated alphas.

Uncertainty Analysis

- 1. Our source of uncertainty: what is the time between neutron detections? \Rightarrow horizontal error bars
- 2. Horizontal error bars \Rightarrow which bin does a count belong in?
- 3. Which bin? \Rightarrow uncertainty in number of counts per bin \Rightarrow vertical error bars (which we want)!

Graphic of horizontal error bars contributing to count uncertainty.

We need to describe the above mathematically... Steps:

- 1. Obtain horizontal error bars;
- 2. Describe the influence of horizontal error bars on other bins.
- 3. Estimate the vertical error bars.

Derivation is more explicit in the conference summary

Uncertainty Analysis

- Step 1: Obtain Horizontal Error Bars.
 - First, normalize the PDF for each bin $[t_i, t_i + \Delta]$.

- Second, calculate the mean and standard deviation.

Graphic of horizontal error bars contributing to count uncertainty.

$$1 = \int_{t_j}^{t_j + \Delta} -\eta(t_j, \Delta) \times A(e^{r_1 t} \rho_1 + e^{r_2 t} \rho_2) dt$$
$$p(t, t_j, \Delta) = \eta(t_j, \Delta) p(t) = -\eta(t_j, \Delta) \times A(e^{r_1 t} \rho_1 + e^{r_2 t} \rho_2)$$

$$= \int_{t_i}^{t_i + \Delta} \frac{1}{\sqrt{2\pi}\sigma(t_j, \Delta)} \exp\left(-\frac{(\mu(t_i, \Delta) - t)^2}{2\sigma(t_i, \Delta)^2}\right) dt$$
$$\sigma(t_j, \Delta) = \int_{t_j}^{t_j + \Delta} \frac{1}{t^2 \times p(t, t_j, \Delta)} dt - \mu^2$$

Step 2: Describe the Influence on Other Bins.

- Given μ and σ from Step 1, assume a distribution. We assume Normal (Gaussian and Poisson are similar).
- The probability of a count in bin *j* belonging in bin *i* is equal to the area under the <u>portion</u> of the normal distribution (for bin *j*) within the boundaries of bin *i* (divided by the total area of the normal distribution = 1).

Uncertainty Analysis

- Step 3: Estimate Vertical Error Bars.
 - From Step 2, we have the probability of a bin j count belonging in bin i, $q_i(j)$.
 - <u>Sub-step a</u>: estimate the vertical error bar in bin i due to bin $j \beta_i(j)$ by using binomial variance.

Graphic of horizontal error bars contributing to count uncertainty.

- <u>Sub-step b</u>: to find the total vertical error bar in bin i, β_i , we need to sum the $\beta_i(j)$ over all bins j. Then we are done.
- Step 4: Obtain un et rainty in fit parameters (given n bins)

 $\beta_i = \sum_{i=0}^{n} q_i(j) (1 - q_i(j)) p(t, t_j, \Delta)$ - The covariance matrix of the parameters C is given by:

$$V = [J^T W J]^{-1} \qquad C = \sigma_R^2 \times V$$

$$-\beta_W \text{ is the } 1 - \sigma_R \text{ error bar for bin } i = [t, t, t] + [t]$$

- $-\sigma_R$ is the standard deviation of the residuals.

Preliminary Validation of Uncertainty Analysis

- We took a long measurement of 4.5 kg of a beryllium-reflected plutonium sphere (the BeRP ball).
- The measurement was split into 408 individual files (measurements) and the histograms from each were used to obtain a sample standard deviation.
- The analytic error bars overestimate the uncertainty.
- There is an agreement in the trends. (Excellent at small times/high counts)
- In this analysis, the constant term was subtracted. When working with $0 \le \Delta t < \infty$, the constant term must be subtracted for normalization.
- In the future, and all practical cases, the term will not be subtracted when working with individual bins.

Comparison of analytic and sample error bars.

Conclusion and Future Work

2-Exp Fit

- The presence of moderating material necessitates a 2-exp treatment to Rossi-alpha analyses.
 - Even systems experiencing non-negligible time-offlight are better-treated by a 2-exp fit.
- Simulated and measured data will be used to validate the equations.
- The first-principles approach to Rossi-alpha will enable studies of systems exhibiting other phenomena.
 - E.g., fuel containing burnable poisons.

Uncertainty Analysis

- The Jacobian of the fit weighted by the error bars can be used to explicitly calculate the variance and covariance of the fit parameters.
- The error bars can be used to weight the fit of the Rossi-alpha histogram.
 - Error bars depend on the fit; thus, fitting becomes an iterative process until fit parameters converge.
- The analytic error bars predict random error. Coupling analytic to measured uncertainty gives insight to systematic uncertainty.
- Future work also includes further validation.

Acknowledgements

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

