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Introduction

• Special nuclear material (SNM) undergoes fission; neutrons
from fission can cause another fission…
 neutron-multiplying system (characterized by reactivity).

• The reactivity of a subcritical system is of interest in:
– Nuclear Nonproliferation: fuel pin diversion? Is a source
– neutron-multiplying?
– Criticality Safety: will the reactor regain subcriticality during

normal and credible upset conditions? In-situ measurements.
– Accelerator-Driven Systems

– Emergency Response: determine if a sample is multiplying
or if neutrons are from another source e.g., (alpha,n).

• Challenge: we cannot directly estimate a system’s
subcritical reactivity.

Nuclear fission (chain).

IAEA Inspection
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Background

• In neutron-multiplying (fission-chain)
systems, neutron emissions/detections
are not uniformly distributed in time.
– This is due to time-correlation between prompt

neutrons originating from the same fission.

• The non-uniformity can be observed
by producing a histogram of the times
between neutron detections.

– This is the Rossi-alpha histogram.

• Traditionally, it is assumed the trend is
described by:

݌ ݐ ൌ ܣ ൅ ఈ௧݁ܤ

α is the prompt-neutron decay constant.

Related to fission-chain 
half-life/life-time.

ఈ௧݁ܤ

Related to uncorrelated 
counts (continuum). 

ܣ

• The subcritical reactivity can be inferred from the prompt neutron
decay constant, alpha.

• We can estimate alpha by fitting the Rossi-alpha histogram with p(t).

Sample Rossi-alpha plot.
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Prior Work

• It has been shown for detectors with polyethylene
moderation that a 2-exp fit is more adequate than an
1-exp fit due to slowing-down time.
– For this presentation, we assume 2-exp is more adequate

and focus on the physical meaning/correspondence of
the 2-exp.

• A two-region point-kinetics model for the number
of neutrons in a fissile core and reflector has been
developed.

• Currently, uncertainty in the estimated Rossi-alpha
parameter is calculated by taking many
measurements/splitting one long measurement and
obtaining a sample standard deviation.
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Nc = # of neutrons in fissile core
Nr = # of neutrons in reflector
kc = multiplication factor in core

ℓ௖ = mean n lifetime in core
ℓ௥ = mean n lifetime in reflector
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Goals and Motivations

• Extract alpha: While it has been shown that a 2-exp fit is more adequate, we
do not yet know how to calculate alpha (or other parameters) from the fit.

– Rossi-alpha analysis is obsolete otherwise.

– For most applications, the time between emission and detection (and it’s
distribution) is nonnegligible.

• Estimate Uncertainty: Currently, we rely on many measurements/long
measurements.

– Having an analytic model will allow uncertainty estimations from a single
measurement, ultimately reducing procedural and operational costs.

– This work also proposes a method of estimating the covariance/correlation between
parameters.

• Application Versatility: Our first-principles approach will enable adaptation
to various applications (including parasitic absorption in the reflector/core). L. G. Evans, et al., “A new fast neutron collar for…,” Nuclear 

Instruments and Methods Section A, 729, p740-746, (2013).
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Probability Density Function Derivation

• We can relate the fission rate (dF/dt) to the number of neutrons in
the core via the mean time to fission (generation time), ߬௙.

• The number of resulting neutrons is given by multiplying the mean
number of neutrons from fission.

• On a case-by-case basis, assuming ߝ is efficiency, the probability of:

i. A fission in dt0 about t0 is (with average fission rate ଴ሶܨ ):

ii. A count at t1 as a result of fission at t0 is:

iii. A count at t2 as a result of a count at t1 is:

• The probability of a count at t1 followed by a count at t2 from a
common ancestor (not at t1) is obtained by integrating the product
of (i)-(iii) over െ∞ ൏ ଴ݐ ൏ ଵݐ and averaging over the distribution
of neutrons emitted per fission.

Performing the integration and choosing t1 = 0 and including a
constant term to account for uncorrelated counts yields:
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i. ଴ሶܨ ଴ݐ݀

To account for the 
neutron detected at t1
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ଵߩ and	ߩଶ are constant functions of  ܴ, ,ଵݎ ଶݎ	݀݊ܽ
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Rossi-alpha and Reflector Time

• We now have a PDF!
• This is the function we would use to fit the Rossi-alpha histogram.

• Note: it is not the case that one exponent corresponds to the Rossi-alpha while one exponent corresponds 
to the reflector time.
– Reflector Time is the time between birth and detection (given the neutron is detected).
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Measurement

• HEU (Rocky Flats Shells): 
– 93.12 wt% 235U
– Total Mass: 21.8 kg
– Inner/Outer Radius = 2.013/6.67 cm

Bare Tubes MC-15

-1/α (us) 63.9795 ± 3.7045 59.9161 ± 0.8616

ℓr (us) 68.40 ± 2.39 95.08 ± 1.27

• Both systems should measure the same α… They do: 1-σ
intervals overlap

• The ℓr differ by 26.68 us… We expect < 35 us since 
outgoing neutrons have already seen poly

252Cf Interrogation 
Source HEU

HDPE

Bare 3He Tubes

50 cm

NoMAD 3He Detection 
System

(Known Slowing Time = 35‐40 us)

Comparison of  measurement systems with differing poly.
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Measurement

• HEU (Rocky Flats Shells): 
– 93.12 wt% 235U
– Total Mass: 21.8 kg
– Inner/Outer Radius = 2.013/6.67 cm

252Cf Interrogation 
Source HEU

HDPE

Bare 3He Tubes

50 cm

NoMAD 3He Detection 
System

(Known Slowing Time = 35‐40 us)

Bare Tubes MC-15

2-exp -1/α (us) 63.9795 ± 3.7045 59.9161 ± 0.8616

1-exp -1/α (us) 171 225

• The alpha’s are (very) different.
• Reflector time is folded into the calculated alphas.

Comparison of  alpha fit results from 2-exp and 1-exp fits.
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Uncertainty Analysis

1. Our source of  uncertainty: what is the time between neutron detections? ⇒ horizontal error bars
2. Horizontal error bars ⇒ which bin does a count belong in?
3. Which bin? ⇒ uncertainty in number of  counts per bin ⇒ vertical error bars (which we want)!

Graphic of  horizontal error bars contributing to  count uncertainty.

We need to describe the above mathematically… Steps:
1. Obtain horizontal error bars;
2. Describe the influence of horizontal error bars on

other bins.
3. Estimate the vertical error bars.

Derivation is more explicit in the conference summary



12/15/2018 |   11Los Alamos National Laboratory

Uncertainty Analysis

• Step 1: Obtain Horizontal Error Bars.

– First, normalize the PDF for each bin [tj , tj + Δ].
– Second, calculate the mean and standard deviation.
– Thus far, we have not made any arbitrary assumptions.

Graphic of  horizontal error bars contributing to  count uncertainty.

1 ൌ න െߟ ,௝ݐ ∆ ൈ ܣ ݁௥భ௧ߩଵ ൅ ݁௥మ௧ߩଶ ݐ݀
௧ೕା∆

௧ೕ

݌ ,ݐ ,௝ݐ ∆ ൌ ߟ ,௝ݐ ∆ ݌ ݐ ൌ െߟ ,௝ݐ ∆ ൈ ܣ ݁௥భ௧ߩଵ ൅ ݁௥మ௧ߩଶ
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• Step 2: Describe the Influence on Other Bins.

– Given ߤ and ߪ from Step 1, assume a distribution. We
assume Normal (Gaussian and Poisson are similar).

– The probability of a count in bin j belonging in bin i is
equal to the area under the portion of the normal
distribution (for bin j) within the boundaries of bin i
(divided by the total area of the normal distribution = 1).

Prob of  bin j count in bin i
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• Step 4: Obtain uncertainty in fit parameters (given n bins)

– The covariance matrix of the parameters C is given by:

ܸ ൌ ܬ்ܹܬ ିଵ							ܥ ൌ ோଶߪ ൈ ܸ

– W is the nൈn weighting matrix with the ௜ߚ on the diagonal.

– J is the nൈ(number of fit parameters) Jacobian matrix of the fit.

– ோߪ is the standard deviation of the residuals.
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Uncertainty Analysis

Graphic of  horizontal error bars contributing to  count uncertainty.

• Step 3: Estimate Vertical Error Bars.

– From Step 2, we have the probability of a bin j count belonging in bin i, ௜ݍ ݆ .

– Sub-step a: estimate the vertical error bar in bin i due to bin j – ௜ሺ݆ሻߚ – by
using binomial variance.

௜ߚ ݆ ൌ ௜ݍ ݆ 1 െ ௜ݍ ݆ ,ݐሺ݌ ,௝ݐ ∆ሻ

– Sub-step b: to find the total vertical error bar in bin i, ,	௜ߚ we
need to sum the over	௜ሺ݆ሻߚ all bins j . Then we are done.

– ௜ߚ is the error	ߪ-1 bar for bin i: [ti , ti + Δ]

௜ߚ ൌ ෍ ௜ݍ ݆ 1 െ ௜ݍ ݆ ,ݐሺ݌ ,௝ݐ ∆ሻ
ேିଵ

௜ୀ଴

Variance for 
one count

Scaling Factor 
for all counts
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Preliminary Validation of  Uncertainty Analysis

• We took a long measurement of 4.5 kg of a beryllium-reflected
plutonium sphere (the BeRP ball).

• The measurement was split into 408 individual files
(measurements) and the histograms from each were used to
obtain a sample standard deviation.

• The analytic error bars overestimate the uncertainty.

• There is an agreement in the trends. (Excellent at small
times/high counts)

• In this analysis, the constant term was subtracted. When
working with 0 ൑ ݐ߂ ൏ ∞ , the constant term must be
subtracted for normalization.

• In the future, and all practical cases, the term will not be
subtracted when working with individual bins.

Comparison of  analytic and sample error bars.
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Conclusion and Future Work

Uncertainty Analysis
• The Jacobian of the fit weighted by the error bars

can be used to explicitly calculate the variance and
covariance of the fit parameters.

• The error bars can be used to weight the fit of the
Rossi-alpha histogram.
– Error bars depend on the fit; thus, fitting becomes an

iterative process until fit parameters converge.

• The analytic error bars predict random error.
Coupling analytic to measured uncertainty gives
insight to systematic uncertainty.

• Future work also includes further validation.

2-Exp Fit
• The presence of moderating material necessitates a

2-exp treatment to Rossi-alpha analyses.
– Even systems experiencing non-negligible time-of-

flight are better-treated by a 2-exp fit.

• Simulated and measured data will be used to
validate the equations.

• The first-principles approach to Rossi-alpha will
enable studies of systems exhibiting other
phenomena.
– E.g., fuel containing burnable poisons.
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