

Preliminary Benchmark Analysis of Component Critical Configuration of KRUSTY

ANS Winter 2018 Orlando, FL

Kristin Smith, Jesson Hutchinson, Theresa Cutler, and Rene Sanchez

LA-UR-18-30783

What is KRUSTY?

Los Alamos National Laboratory

KRUSTY Purpose

- Prototype and proof of concept for Kilopower Project
- HEU system reflected by BeO and steel
- Two Options:
 - -Power source
 - -Deep space probe
- Testing began Nov. 2017
 - -Component critical configuration
 - BeO Worth
 - B₄C Worth
 - Benchmark configurations
- 28-hour test March 2018

Component Critical Configuration

• 25 cm HEU fuel

- -93.07% enriched
- -7.65 wt% molybdenum
- -Annulus with 8 slots

Component Critical Configuration

• 25 cm HEU fuel

- -93.07% Enriched
- -7.65 wt% molybdenum
- -Annulus with 8 slots

BeO Reflectors

-Top, Bottom, and Ring

Component Critical Configuration

- 25 cm HEU fuel
 - -93.07% Enriched
 - -7.65 wt% molybdenum
 - -Annulus with 8 slots
- BeO Reflectors
 - -Top, Bottom, and Ring
- Shielding
 - -Outer shields and multilayered top and bottom
- Critical Configuration
 - -28.575 cm
 - -Excess reactivity: 9.5¢
 - -k_{eff}: 1.0006

Why benchmark KRUSTY?

BeO Benchmarks

- 9 Experiments
- Large disagreement
- KRUSTY will add new modern experiment

Molybdenum Benchmarks

- Seven Experiments
- Discrepancy
- KRUSTY may add much needed new point

Sensitivity and Uncertainty Analysis

Evaluated Parameters

Mass & Dimensions	Positioning Composition		
HEU Core	Platen Height	Impurities	
BeO Pieces	Radial Alignment	²³⁵ U Enrichment	
SS Pieces	BeO Gaps	B ₄ C Enrichment	
B₄C Shields	SS Shield Gaps	Air	

Platen height

-Governed by Comet screws

- Platen height
 - -Governed by Comet screws
- Radial position
 - -Alignment of fuel
 - -Jacket
 - -BeO ring shield
 - -Platen

Platen height

-Governed by Comet screws

Radial position

- -Alignment of fuel
- -Jacket
- -BeO ring shield
- -Platen

• BeO gaps

- -Radial
- -Axial
- -Angle

- Platen height
 - -Governed by Comet screws
- Radial position
 - -Alignment of fuel
 - -Jacket
 - -BeO ring shield
 - -Platen
- BeO gaps
 - -Radial
 - -Axial
 - -Angle
- Shield Gaps

Results

k_{eff} vs. ENDF-B Library

Cross Section Library	k _{eff}	$\pm 1\sigma$	C-E (pcm)
ENDF-B/VIII.0	0.99366	0.00001	-694
ENDF-B/VII.1	0.99647	0.00001	-413

Experimental k_{eff} 1.0006

• For Standard Reference Materials:

- –Add 0.02966 to k_{eff}
- Modeled with MCNP6.2[®]
- Active Histories: 4 Billion

Fuel Mass Sensitivity

Piece	Mass (g)	Central Difference Sensitivity	<u>+</u> 1σ	KSEN Sensitivity	<u>+</u> 1σ
D7XP (Top)	10741 ± 0.173	0.12471	0.08822	0.11930	0.25717
DDND (Middle)	10718 ± 0.173	0.12454	0.08822	0.21971	0.47545
DAR2 (Bottom)	10741 ± 0.173	0.12476	0.08822	0.18619	0.38324

Fuel Mass Sensitivity

Fuel Thickness Sensitivity

Fuel Outer Diameter Sensitivity

Los Alamos National Laboratory

Fuel Inner Diameter Sensitivity

Los Alamos National Laboratory

Fuel Slot Diameter Sensitivity

Summary

• Benchmark will use ENDF/B-VIII.0

Sensitive to fuel mass

- -Manually calculated sensitivity agrees with KSEN
- -KSEN will be used for future mass perturbations

Sensitive to fuel dimensions

-Behaving as expected

Acknowledgement

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Thanks for listening!

- Kristin Smith
 - kristinnsmith@tamu.edu