

Delivering science and technology to protect our nation and promote world stability

PROMPT NEUTRON DECAY CONSTANT MEASUREMENTS ON THE KRUSTY COLD CRITICAL CONFIGURATION

2018 ANS Winter Meeting and Nuclear Technology Expo

George McKenzie

November 2018

EST.1943 -

Overview

• What is KRUSTY?

- Reactor purpose
- Phases of experimentation
- What is Rossi-α?
 - \circ Method
 - Why measured?
- Specifics for experiment
 - Detector Placement
 - Execution
 - Results
- Comparison to simulation
- Conclusions

What is **KRUSTY**? – Reactor Purpose

- Kilopower sized reactor intended for manned deep space missions.
- Concept uses heat pipes to generate electricity.
- Nuclear component is BeO reflected HEU.
- Full scale testing of nuclear component completed early 2018.

KRUSTY Full Power Assembly

What is KRUSTY? – Phases of experimentation

Phase 0

- Fe surrogate of the core used for systems checks and build practice.
- DU surrogate core used for systems checks with chemically identical surrogate.
- Electrically heated system test.
- Phase 1
 - Component Criticals.
 - HEU core, reflectors, and absorbers only.
 - Worth of reflector and absorber components measured.
 - \circ Rossi- α measurements performed.

Assembly of the DU Surrogate

What is KRUSTY? – Phases of experimentation

Phase 2

- Cold Critical
- Add in heat pipes, electrical generation equipment, and vacuum chamber.
- Worth measurements of removable components measured.

Phase 3

- Incremental increase in heat generation through three different "Free Run" scenarios.
- Phase 4
 - Full power test. (~800° C)
 - o 28 hour continuous test.
 - Examined transient scenarios.

Transition to Cold Critical Configuration

What is Rossi-α? - Method

 The prompt neutron decay constant α is the rate at which the prompt neutron population changes as a function of time.

•
$$\alpha = \frac{k_p - 1}{l}$$

- Measureable quantity is α, used to infer parameter of interest neutron lifetime, I.
- At delayed critical, this constant is the α-eigenvalue of the system.

•
$$\alpha_{DC} = \frac{-\beta}{l}$$

• At prompt critical α =0.

Example Rossi-α Distribution

What is Rossi-α? - Method

- The prompt neutron decay constant is calculated by measuring the correlations between neutrons emitted by a fissioning system.
- Rossi-α is an autocorrelation of neutron detection events.
 - Combination of the probability of detecting a neutron from a fission chain and also detecting a second neutron from that same chain.

- $p(t) = A + Be^{\alpha t}$
 - A is related to the population of accidental neutrons.
 - Typically related to the source and multiplication of the system.
 - B is related to the population of correlated neutrons.
 - By definition correlated neutrons must be prompt.
 - The probability of detecting correlated neutrons drops exponentially with time (if the system is below prompt critical), so the exponential term is included with the correlated term.

What is Rossi-α? - Method

- The α-eigenvalue can be determined two ways.
 - Direct measurement at delayed critical.
 - Inference using two or more subcritical data points.
 - Plot α versus the inverse count rate.
 - The y-intercept is the αeigenvalue.
 - Example for the polyethylene class foils experiment shown on the right.

Example for the polyethylene class foils experiment.

What is Rossi-α? – Why measured?

- Rate at which the prompt neutron population decays as a function of time.
- At DC comprises the fundamental α-eigenvalue.
- Useful for neutron spectrum hardness comparisons in critical experiments.
- Useful for determining neutron lifetime of a system.
- Used to measure subcritical reactivity in a system.

Assembly	α _{DC} (1/s)
Lady Godiva	-1.1x10 ⁶
Godiva IV	-8.4x10 ⁵
Topsy (Oy(94) w/ NU reflector)	-3.7x10 ⁵
Zeus	-8.9x10 ⁴
Zeus LEU Lead	-5.6x10 ⁴
Zeus HEU Lead	-3.8x10 ⁴
Sheba	-200
Poly Class Foils	-199.4

Specifics for experiment – Detector placement

- Consists of largely commercial off the shelf equipment.
- List-mode module is custom LANL designed and built module.
 - \circ Time tags detection events.
- Detector is Reuter-Stokes 40 atm 0.25" diameter, 4" long ³He detector.
 - \circ Other detectors could be used.
 - Chosen because of its fast recovery and size.

Specifics for experiment – Detector placement

- For this system, the detectors were placed into the heat pipe channels of the core.
- Closest location feasible to the core.
- Approximately centered active region on the core.
- Radially spread out.

Detector Placement for Rossi- α experiment.

Specifics for experiment – Execution

- Reactivity on this system adjusted in two ways.
 - By adjusting the total height of BeO on the machine.
 - By manipulating the critical assembly machine to adjusted the "effective" height of BeO around the core.
- Three configurations measured.
 - Two with 10.375" BeO on Platen.
 - 25 mils below critical position.
 - 35 mils below critical position.
 - o One with 10.25" BeO on Platen
 - subcritical

BeO reflector loaded onto the Platen.

Specifics for experiment – Results

- $\alpha_{\rm DC} = -1109.4 \pm 14.5 \, {\rm s}^{-1}$
- Value determined through extrapolation of measured data.
- High count rate near critical (and thermal system) saturated detectors, so measurement was not made at DC.

	1/CR	α (s ⁻¹)	ρ (\$)
-25 mils	2.42E-05	-1218.9	-0.10
-35 mils	3.38E-05	-1268.4	-0.14
10.25" BeO	3.98E-05	-1289.5	-0.16

Comparison to simulation

- Measured value
 - \circ α_{DC} = -1109.4 ± 14.5 s⁻¹
- Calculated value
 - \circ $\alpha_{DC} = -1317.7 \pm 7.6 \text{ s}^{-1}$
- About 18% difference
 - Typically see discrepancy near 10%.
 - Simulation typically calculates high.
 - Likely caused by the value being rather small already and the exclusion of the detectors from the model.
 - Also caused by model not being exactly 1.
 - o Overall adequate agreement.

Conclusions

- Measured value
 - \circ α_{DC} = -1109.4 ± 14.5 s⁻¹
 - Compares well to solution systems.
 - Because of thick thermalizing BeO reflection.

	Assembly	α _{DC} (1/s)
on systems. g BeO reflection.	Lady Godiva	-1.1x10 ⁶
	Godiva IV	-8.4x10 ⁵
	Topsy (Oy(94) w/ NU reflector)	-3.7x10 ⁵
	Zeus	-8.9x10 ⁴
KRUSTY —	Zeus LEU Lead	-5.6x10 ⁴
	Zeus HEU Lead	-3.8x10 ⁴
	Sheba	-200
	Poly Class Foils	-199.4

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy. Los Alamos National Laboratory

Questions?

Los Alamos Nationa

11/13/18 | 18

Theory – Prompt Neutron Decay Constant (cont.)

Correlated Neutrons

- Neutrons that have a common fission ancestor.
- Must all be prompt neutrons.

Accidental Neutrons

- Neutrons that do not have a common fission ancestor.
- Include delayed neutrons, source neutrons, and prompt neutrons from different fission chains.

Every branching signifies a fission.