Updating the Godiva-IV Benchmark

Victoria Hagopian^{1,2}, Joetta Goda¹, Jesson Hutchinson¹, Geordie McKenzie¹

¹Los Alamos National Laboratory NEN – Nuclear Engineering & Nonproliferation NEN-2: Advanced Nuclear Technology

²Penn State University

Outline

- Description of device
 - Overview of uses and applications
- Purpose behind work
- Creating user friendly interface for operators
- Comparison between ENDF/B-VII.1 and ENDF/B-VIII.0 Libraries
- Comparison to Benchmark Case 4
- Current work on detailed model
- Future/continued work

History – Lady Godiva to Now

- Built in 1950s
- Unshielded, spherical pulsed reactor
- Used to produce neutron and gamma ray bursts for sample irradiation
- Description of Assembly
 - Diameter: ~12 inches
 - Mass: 52.65 kg
 - Enrichment: 93.71 wt% U-235

Godiva-IV Assembly Description

- Supercritical fast-burst assembly
 - Experimental regimes: subcritical, delayedcritical, prompt-critical
- Fourth in series
 - Built in 1960's
 - First version, Lady Godiva was a sphere
- Description of Assembly
 - Height: ~6 inches
 - Diameter: ~7 inches
 - Mass: 65 kg
 - Enrichment: 93.5 wt% U-235
- Applications:
 - Sample reactivity worth studies
 - Reactor kinetics benchmark studies
 - Dosimetry measurements
 - Criticality alarm testing
 - Sample neutron activation studies

Breakdown of Work

- From the disassembly...
 - Updated spindle dimensions
 - Updated glory-hole dimensions
 - Addition of shim
- New top hat
- New cross-section libraries
 - Comparison between ENDF/B-VII.1 and ENDF/B-VIII.0
- TR Cards
- Updates have significantly changed computational result
 - Closer to the expected value from the experiment

Safety Block Shim

Spindle

Top Hat

Old Top Hat

New Top Hat

TR Cards

```
365 c ~~~~~~ Translation Cards ~~~~~~
366 c To move the Safety Block to one of the Control System positions, change the z value of TRl to a value of the line:
367 C
           v = -2.54 \times x - 0.4207
368
    c Where y is the z value in TR1 in MCNP and x is the Control System Position in inches.
369
    c Equation is bounded between -0.150 and 7.844 inches.
370 TR1 0 0 0
371 c
372 c To move Control Rod 1 to one of the Control System positions, change the z value of TR2 to a value of the line:
373 c
           y = -2.54 \times x + 0.8204
374 c Where y is the z value in TR2 in MCNP and x is the Control System Position in inches.
375 c Equation is bounded between -0.160 and 4.000 inches.
376 TR2 0 0 0
377
    С
378 c To move Control Rod 2 to one of the Control System positions, change the z value of TR3 to a value of the line:
379 c
           y = -2.54 \times x + 0.3175
380
    c Where y is the z value in TR3 in MCNP and x is the Control System Position in inches.
    c Equation is bounded between -0.250 and 4.000 inches.
381
382 TR3 0 0 0
383 C
384 c To move the Burst Rod to one of the Control System positions, change the z value of TR4 to:
385 C
386 c Control System Position | z Value of TR4
387 C
               Full-In
                               1
                                     7.51050
388
               Full-Out
                                     0.00000
    С
                               1
389 TR4 0 0 0
390 C
```

ENDF/B-VII.1 vs ENDF/B-VIII.0

ENDF/B-VII.1 Cross Section Results

Case: Top Hat	Present	Removed	
k _{eff}	0.99810 ± 0.00027	0.99710 ± 0.00026	
Average Energy of Neutrons Causing Fission (MeV)	1.4251	1.4268	
Average Number of Neutrons Produced per Fission $(\overline{\nu})$	2.595	2.595	
Percentage of Fission Caused by Neutrons			
Thermal(< 0.625 eV)	0.00%	0.00%	
Intermediate (0.625 eV – 100 keV)	5.54%	5.50%	
Fast (> 100 keV)	94.46%	94.50%	

ENDF/B-VIII.0 Cross Section Results

Case: Top Hat	Present	Removed	
k _{eff}	0.99773 ± 0.00028	0.99633 ± 0.00026	
Average Energy of Neutrons Causing Fission (MeV)	1.4227	1.4243	
Average Number of Neutrons Produced per Fission $(\bar{\nu})$	2.592	2.592	
Percentage of Fission Caused by Neutrons			
Thermal(< 0.625 eV)	0.00%	0.00%	
Intermediate (0.625 eV - 100 keV)	5.04%	5.01%	
Fast (> 100 keV)	94.96%	94.99%	

Benchmark Case 4

Benchmark Case 4 Results			
Model:	Case 4		
k _{eff} - ENDF/B-VI	0.9897 ± 0.0003		
k _{eff} - ENDF/B-VII.1	0.9907 ± 0.0003		
Average Number of Neutrons Produced per Fission $(\overline{\nu})$	2.593		
Percentage of Fission Caused by Neutrons			
Thermal(< 0.625 eV)	0.00%		
Intermediate (0.625 eV - 100 keV)	5.57%		
Fast (> 100 keV)	94.43%		

Current Work – Detailed Model

- Detailed modelling of each individual piece
- Need to complete all clamps
- Almost ready to begin sensitivity study

Current Work - KSEN

- Plan to use KSEN card in MCNP to perform sensitivity study
- Novel because this functionality is fairly new to MCNP and very new to benchmark community
- The change in k with a respect to a change in component density is shown the right
- KSEN is able to directly calculate the unconstrained sensitivity (S) using a single input deck
- Similar techniques can be used to calculate compositional uncertainties

 $u_k = k_0 \sqrt{\left(S_{k,\rho} \frac{u_{\rho}}{\rho_0}\right)^2}$

c wwwwwww Data Cards wwwwwww mode n kcode 100000 1.0 50 100 ksrc 0.0 2.5 1.27 0.0 -2.5 1.27 ksen1 xs cell = 700 MT=-1 ksen2 xs cell = 701 MT=-1

Future Work

- Continue sensitivity analysis
- Update the benchmark document
 - New figures
 - New tables
 - New components to discuss
 - Ensure sensitivities are still adequate
- Continue development of detailed model
- Add pstudy for moving components
- Hope to include updates to next edition of ICSBeP

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

References

- M.B. CHADWICK, et al., "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," *Nuclear Data Sheets*, 112, *12*, pp. 2887, (2011).
- D.A. BROWN, et al., "ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data," *Nuclear Data Sheets*, 148, pp. 1, (2018).
- R.D. MOSTELLAR, et. al., "Godiva-IV Delayed-Critical Experiments and Description of an Associated Prompt-Burst Experiment," *International Handbook of Evaluated Criticality Safety Benchmark Experiments*, HEU-MET-FAST-086, NEA/NSC/DOC/(95)03/II.
- J. F. BRIESMEISTER, "MCNP A General Monte Carlo N-Particle Transport Code", (2000).
- CSEWG-COLLABORATION, "Evaluated Nuclear Data File ENDF/B-VI.8," www.nndc.bnl.gov/endf, (2001).
- M.B. CHADWICK, et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," *Nuclear Data Sheets*, 107, *12*, pp. 2931, (2006).
- R.E. PETERSON, "Lady Godiva: An Unreflected Uranium-235 Critical Assembly," LA-1614, (1953).