Towards a better thermal neutron scattering law generation: oClimax + NJOY2016

K. Ramic, C. Wendorff, J. Hou, J. Feng, Y. Danon, E. Liu *Rensselaer Polytechnic Institute, Troy, NY, 12180*

ANS Winter Meeting 2018, Orlando FL, November 2018

Thermal Scattering Overview

- Overall objectives:
 - Use double differential thermal scattering and vibrational spectroscopy measurements to benchmark and improve thermal scattering evaluations.
- Preform measurement at SNS (ORNL):
 - Use ARCS and SEQUOIA for double differential scattering.
 - Use VISION for phonon spectrum measurements.
 - Key collaborators at ORNL: Goran Arbanas, (Mike Dunn).
 - Scientists at SNS:
 Alexander Kolesnikov, Doug Abernathy, Luke Daemen,
- Advantages:
 - New measurements have much better energy and angle resolution compared to old data.
 - Can measure different type of samples (liquid, solid, mixtures, compounds).
 - Measurements can be done at variety of temperatures starting from 5K
 - Tremendous amount of different experimental information helps constrain and overcome modeling deficiencies.

Thermal Scattering Experimental Needs

Completed Experiments

Moderators	SEQUOIA (Ω: 3-58 ⁰ in 1 ⁰ increments)	ARCS (Ω: 3-125 ⁰ in 1 ⁰ increments)	VISION (at 5 K)
Light Water (H ₂ O)	E _I : 55, 160, 250, 600, 1000, 3000, 5000 meV Temp: 300 K		YES
Polyethylene (CH ₂)	E _I : 55, 160, 250, 600, 1000, 3000, 5000 meV Temp: 300 K	E _I : 50, 100, 250, 700 meV Temp: 5, 295 K	YES
Quartz (SiO2)		E _I : 50, 100, 250, 700 meV Temp: 5, 295, 573, 823, 873 K Thickness: 3.175, 6.35 mm	YES
Teflon ((C ₂ F ₄) _n)		E _I : 50, 100, 250, 700 meV Temp: 5, 300, 500 K	NO
Lucite (C ₅ O ₂ H ₈)		Ei: 50, 100, 250, 700 meV Temp: 5, 300, 400 K	YES
Concrete (mixture)		Ei: 50, 100, 250, 700 meV Temp: 5, 300 K	NO

╺╺╸╸╸╸

4 of 12

e Gaerttner LINAC Center

Thermal scattering – evaluation methodology

Polyethylene Experimental Data and Evaluation

Polyethylene Criticality Benchmarks

- The new RPI evaluation and the ENDF/B-VIII.0 give similar results.
- There are some discrepancies between the benchmarks and simulation.

Lucite (C₅O₂H₈)_n Total cross section and benchmarks

- RPI library represents a clear improvement to K-effective.
- ENDF/B-VIII.0 is similar to free gas treatment.

Possible Phonon Expansion Issues?

Possible Phonon Expansion Issues?

Possible Phonon Expansion Issues?

Questions?

Supplemental Slide

