SENSMG: A New Tool for Multigroup Discrete Ordinates Sensitivity Analysis for Criticality

Jeffrey A. Favorite Monte Carlo Methods, Codes, and Applications Group (XCP-3) Los Alamos National Laboratory

2018 American Nuclear Society Winter Meeting Orlando, Florida November 11–15, 2018

UNCLASSIFIED

Slide 1 of 14

What Is It?

- SENSMG is a tool for computing first-order sensitivities of
 - + neutron reaction rates,
 - + neutron reaction-rate ratios,
 - + neutron leakage,
 - + k_{eff} ,
 - + α

using the PARTISN multigroup discrete-ordinates code.

- SENSMG computes sensitivities to
 - + all of the transport cross sections and data (total, fission,^a nu, chi, and all scattering moments),
 - + two edit cross sections (absorption and capture),
 - + isotope density

for every isotope and energy group.

- SENSMG also computes
 - + sensitivities to mass density for every material
 - + derivatives with respect to all interface locations and outer boundaries.
- One-dimensional spheres and slabs and two-dimensional (*r-z*) cylinders.

^a Technically, fission is an edit cross section in PARTISN because only the product with nu is used in the transport.

UNCLASSIFIED

Slide 2 of 14

More About SENSMG

- SENSMG is a wrapper around PARTISN; it does not touch the PARTISN source code.
 - + In this sense SENSMG is similar to the SWANLAKE code^b from Oak Ridge National Laboratory (1973) and the SENSIT code^c from LANL (1980).
 - A modern code with similar capability is SUSD3D:
 I. Kodeli, "Multidimensional Deterministic Nuclear Data Sensitivity and Uncertainty Code System, Method and Application," *Nucl. Sci. Eng.*, **138**, 45-66 (2001).
 I. A. Kodeli and S. Slavič, "SUSD3D Computer Code as Part of the XSUN-2017 Windows Interface Environment for Deterministic Radiation Transport and Cross-Section Sensitivity-Uncertainty Analysis," *Science and Technology of Nuclear Installations*, **2017** (2017).
- SEMSMG is a combination of Fortran and Python.
- SENSMG was developed under Linux.
- Available on github: https://github.com/jafavorite/SENSMG
- I can help you adapt SENSMG to your multigroup S_N code

^c S. A. W. GERSTL, "SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code," Los Alamos National Laboratory report LA-8498-MS (August 1980).

UNCLASSIFIED

Slide 3 of 14

^b D. E. BARTINE, F. R. MYNATT, and E. M. OBLOW, "SWANLAKE, a Computer Code Utilizing ANISN Radiation Transport Calculations for Cross-Section Sensitivity Analysis," Oak Ridge National Laboratory report ORNL-TM-3809 (May 1973).

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

See My Paper in Nuclear Science and Engineering

- The paper has all the equations that are solved and defines all of the sensitivities
- It has test problems showing the application to basic nuclear data.

UNCLASSIFIED

Slide 4 of 14

This Paper

- Applies SENSMG to sensitivities of *k_{eff}* to
 - + interface locations,
 - + material mass densities,
 - + isotopic densities.
- Demonstrates the methods for computing constant-mass derivatives using adjoint-based constant-volume and -density derivatives
- Demonstrates the methods for computing sensitivities with respect to constrained weight fractions

UNCLASSIFIED

Slide 5 of 14

Test Problem

User Interface

Input file: Ju-Flattop (PU-MET-FAST-006) keff sphere mendf71x 2 / no of materials 1 94239 9,38001E-01 94240 4,79988E-02 94241 2,99996E-03 31069 6,53652E-03 31071 4,46355E-03 / Pu-alloy 2 92234 5,40778E-05 92235 7,10966E-03 92238 9,92836E-01 / Flattop natural U 15.53 19.00 / densities 2 / no of shells 4.5332 24.142 / outer radii 2 / material nos 1 1 / index of coarse mesh to use for reaction rates 0 / number of reaction-rate ratios

 Command line: sn.master% \${SENSMG_DIR}/sensmg.py -i pmf006 -ngroup 618 -isn 128 -np 32 -srcacc_no for+adj

• Output is in text files.

UNCLASSIFIED

Slide 7 of 14

Derivative of Pu-Flattop k_{eff} with Respect to Material Interface Locations

A standard SENSMG output •

Constant-Density Derivative of Pu-Flattop k_{eff} with Respect to Material Interface Locations (/cm)

Radial	Adiaint	Central	Difference
Index	Aujoint	Difference	(%)
1	1.95613E-01	1.95606E-01	0.0034
2	8.82494E-04	8.82625E-04	-0.0148

summar	y (sums over g	roups)			
radius	0001 1,956	127E-01			
radius	0002 8,824	943E-04			
group	e_lower	e_upper	e_average	radius0001	radius0002
1	1,987500E+01	2,000000E+01	1,999659E+01	1.074856E-07	2,567615E-10
2	1,975000E+01	1,987500E+01	1,987117E+01	1.434754E-08	9,381421E-11
3	1,962500E+01	1,975000E+01	1,974579E+01	1.331992E-08	5.413638E-11
4	1,950000E+01	1,962500E+01	1,962040E+01	1,401452E-08	4.621409E-11
5	1,937500E+01	1,950000E+01	1,949500E+01	1.506160E-08	4.689379E-11
6	1,925000E+01	1,937500E+01	1,936960E+01	1.647619E-08	5.039975E-11
7	1,912500E+01	1,925000E+01	1,924419E+01	1,798768E-08	5.502305E-11
8	1,900000E+01	1,912500E+01	1,911881E+01	1,969569E-08	6.020700E-11
9	1,887500E+01	1,900000E+01	1,899340E+01	2,161297E-08	6.637957E-11
10	1,875000E+01	1,887500E+01	1,886801E+01	2,369504E-08	7.316204E-11
	mos		UNCL	ASSIELED	

NATIONAL LABORATORY EST.1943 -

Slide 8 of 14

Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Material Mass Densities

A standard SENSMG output •

Constant-Volume Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Material Mass Densities (%/%)

Material	Adjoint	Central	Difference
Index	Aujoint	Difference	(%)
1	6.78358E-01	6.78359E-01	-0.0002
2	2.29895E-01	2.29941E-01	-0.0202

summar materi	y (sums over g al0001 6.783 -10002 2.299	roups) 584E-01 9515-01			
Materi	alvvvz Z.ZJO a lavan	JJJIE-VI			matani a10009
group	e_lower	e_upper.	e_averaye	Materialovol	Materialovoz
1	1,987500E+01	2,000000E+01	1,999659E+01	1,395924E-06	6,476025E-07
2	1.975000E+01	1,987500E+01	1.987117E+01	1,748655E-07	1,141945E-07
- 3	1.962500E+01	1,975000E+01	1.974579E+01	1.659442E-07	8,694576E-08
4	1.950000E+01	1,962500E+01	1,962040E+01	1,755756E-07	8,661363E-08
5	1.937500E+01	1,950000E+01	1,949500E+01	1,890292E-07	9,247281E-08
6	1,925000E+01	1,937500E+01	1,936960E+01	2.065407E-07	1,007263E-07
- 7	1,912500E+01	1,925000E+01	1,924419E+01	2,252229E-07	1,097298E-07
8	1,900000E+01	1,912500E+01	1,911881E+01	2,463935E-07	1,199220E-07
9	1.887500E+01	1,900000E+01	1.899340E+01	2,698229E-07	1,313780E-07
10	1.875000E+01	1,887500E+01	1,886801E+01	2,950198E-07	1.437733E-07
	mos		UNCLA	SSIFIED	

NATIONAL LABORATORY EST.1943 -

Slide 9 of 14

Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Isotopic Number Densities

- A standard SENSMG output
- Not the same as the relative sensitivity with respect to total cross section!
 - + SENSMG does not follow the MCNP convention

Constant-Mass Derivatives of Pu-Flattop *k_{eff}* with Respect to Material Interfaces

The familiar adjoint-based formulas for density sensitivities, which are implemented in SENSMG, yield constant-volume sensitivities.

The adjoint-based formulas for interface-location derivatives (less familiar but extremely useful), also implemented in SENSMG, • yield constant-density derivatives.

UNCLASSIFIED

- Constant-mass derivatives are sometimes needed: .
- For a sphere, the constant-mass derivative of k_{eff} with respect to interface location *i* is ٠

$$\left(\frac{\partial k_{eff}}{\partial r_i}\right)_m = k_{eff} A_i \left(\frac{S_{k,\rho_{j+1}}}{V_{j+1}} - \frac{S_{k,\rho_j}}{V_j}\right) + \left(\frac{\partial k_{eff}}{\partial r_i}\right)$$

 V_{2}, m_{2}, ρ_{2}

Constant-Mass Derivative of Pu-Flattop k_{eff} with Respect to Material Interface Locations (/cm)

Radial	Adiaint	Central	Difference
Index	Aujoint	Difference	(%)
1	-2.52192E-01	-2.52202E-01	-0.0041
2	-2.78688E-02	-2.78682E-02	0.0020

Constant-Mass Derivatives of Pu-Flattop *k_{eff}* with Respect to Mass Densities

٠

For a sphere, the constant-mass derivative of k_{eff} with respect to the mass density of region i is $\left(\frac{\partial k_{eff}}{\partial \rho_i}\right)_m = \frac{V_i}{\rho_i} \left(\frac{\partial k_{eff}}{\partial r_j}\right)_m - \left(\frac{\partial k_{eff}}{\partial r_{j+1}}\right)_m$ Constant-Mass Relative Sensitivity of V_{eff}

Constant-Mass Relative Sensitivity of Pu-Flattop keff with Respect to Material Mass Densities (%/%)

Material	Adjoint	Central	Difference
Index	Aujoint	Difference	(%)
1	3.81171E-01	3.81179E-01	-0.0022
2	-1.73260E+00	-1.73281E+00	-0.0124

Constant-Volume Relative Sen Respect to Material Mass Dens Material Adjoint Index 6.78358E-01 1 2.29895E-01 2

UNCLASSIFIED

Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Isotopic Weight Fractions

• The full-normalization constrained sensitivity S_{k,w_j}^{FN} to the weight fraction of isotope *j* can be computed using the unconstrained isotopic density sensitivities output from SENSMG using

$$S_{k,w_{j}}^{FN} = \frac{w_{I}S_{k,N_{j}} - w_{j,0}S_{k,\mu}}{w_{I}}$$

Constrained Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Isotopic Weight Fractions (%/%) Using Full Normalization

Icotopo	Adjoint	Central Differen	
Isotope	Aujoint	Difference	(%)
Pu239	1.89809E-02	1.89827E-02	-0.0095
Pu240	-1.25872E-02	-1.25715E-02	0.1248
Pu241	-6.80355E-05	-6.80406E-05	-0.0075
Ga69	-3.78340E-03	-3.78344E-03	-0.0009
Ga71	-2.54223E-03	-2.54227E-03	-0.0016
U234	1.49567E-05	1.49561E-05	0.0039
U235	6.54308E-03	6.55113E-03	-0.1228
U238	-6.55804E-03	-6.55977E-03	-0.0264

UNCLASSIFIED

Unconstrained Relative Sensitivity of Pu-Flattop k_{eff} with Respect to Isotopic Weight Fractions (%/%)

weight	1 1 actions (70/70
Isotope	Adjoint
Pu239	6.55282E-01
Pu240	1.99732E-02
Pu241	1.96701E-03
Ga69	6.50700E-04
Ga71	4.85655E-04
U234	2.73890E-05
U235	8.17756E-03
U238	2.21690E-01

Slide 13 of 14

Summary and Conclusions

- This paper has demonstrated the application of the SENSMG code to problems of interest to nuclear criticality safety.
- SENSMG is a wrapper for LANL's PARTISN multigroup discrete-ordinates code.
- SENSMG's standard output sensitivities have been compared with central differences, and the agreement is excellent.

• Also, the standard output sensitivities from SENSMG have been combined using previously derived formulas to compute constrained sensitivities with respect to isotopic weight fractions and constant-mass derivatives.

- These have also been compared with central differences, and the agreement is excellent.
- Adjoint-based sensitivities are much more accurate and efficient than central differences.

This work was funded by the United States National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation Research & Development (NA-22).

UNCLASSIFIED

Slide 14 of 14

